Previous |  Up |  Next

Article

Title: Upper semicomplements and a definable element in the lattice of groupoid varieties (English)
Author: Ježek, Jaroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 12
Issue: 3
Year: 1971
Pages: 565-586
.
Category: math
.
MSC: 06B99
MSC: 08-30
MSC: 08A15
MSC: 08B15
MSC: 20-00
MSC: 20M14
idZBL: Zbl 0225.08007
idMR: MR0289398
.
Date available: 2008-06-05T20:36:19Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105366
.
Reference: [1] A. D. BOL'BOT: O mnogoobrazijach $\Omegan$ -algebr.Algebra i logika, 9 (1970), 406-414. MR 0286733
Reference: [2] R. A. DEAN, T. EVANS: A remark on varieties of lattices and semigroups.Proc. Amer. Math. Soc. 21 (1969), 394-396. Zbl 0174.30602, MR 0241509
Reference: [3] T. EVANS: The lattice of semigroup varieties.Semigroup Forum 2 (1971), 1-43. Zbl 0225.20043, MR 0284528
Reference: [4] J. JEŽEK: Principal dual ideals in lattices of primitive classes.Comment. Math. Univ. Carolinae 9 (1968), 533-545. MR 0244131
Reference: [5] J. JEŽEK: On atoms in lattices of primitive classes.Comment. Math. Univ. Carolinae 11 (1970), 515-532. MR 0269571
Reference: [6] J. JEŽEK: The existence of upper semicomplements in lattices of primitive classes.Comment. Math. Univ. Carolinae 12 (1971), 519-532. MR 0292734
.

Files

Files Size Format View
CommentatMathUnivCarol_012-1971-3_9.pdf 1.423Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo