Previous |  Up |  Next

Article

Title: On the range of nonlinear operators with linear asymptotes which are not invertible (English)
Author: Nečas, Jindřich
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 14
Issue: 1
Year: 1973
Pages: 63-72
.
Category: math
.
MSC: 35J30
MSC: 35J65
MSC: 47H10
MSC: 47H15
MSC: 47H99
MSC: 47J05
idZBL: Zbl 0257.47032
idMR: MR0318995
.
Date available: 2008-06-05T20:40:55Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105470
.
Reference: [1] L. CESARI: Functional analysis and Galerkin's method.Michigan Math. J. 11 (1964), 385-414. Zbl 0192.23702, MR 0173839
Reference: [2] S. A. WILLIAMS: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem.J. Diff. Eq. 8 (1970), 580-586. Zbl 0209.13003, MR 0267267
Reference: [3] E. LANDESMM A. LAZAR: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), n. 7, 609-623. MR 0267269
Reference: [4] J. NEČAS: Fredholm alternative for nonlinear operators and applications to partial differential equations and integral equations.Sasopis pěst. mat. 97 (1972), 65-71. MR 0308882
Reference: [5] J. NEČAS: Remark on the Fredholm alternative for nonlinear operators with application to nonlinear integral equations of generalized Hammerstein type.Comment. Math. Univ. Carolinae 13 (1972), 109-120. MR 0305171
Reference: [6] J. NEČAS: Les méthodes directes en théorie des équations elliptiques.Academia Prague, 1967. MR 0227584
.

Files

Files Size Format View
CommentatMathUnivCarol_014-1973-1_6.pdf 663.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo