Previous |  Up |  Next

Article

Title: Why semisets? (English)
Author: Hájek, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 14
Issue: 3
Year: 1973
Pages: 397-420
.
Category: math
.
MSC: 02A05
MSC: 02D99
MSC: 02E05
MSC: 02K05
MSC: 02K10
MSC: 02K15
MSC: 03A05
MSC: 03E30
MSC: 03E70
MSC: 03F99
idZBL: Zbl 0268.02005
idMR: MR0342393
.
Date available: 2008-06-05T20:42:15Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105499
.
Reference: [1] B. BALCAR: A theorem on supports in the theory of semisets.Comment. Math. Univ. Carolinae 14 (1973), 1-6. Zbl 0281.02060, MR 0340015
Reference: [2] B. BALCAR: Teorie polomnožin.(thesis).
Reference: [3] K. ČUDA: Contributions to the theory of semisets III.Zeitschr. f. Math. Log. (to appeaг).
Reference: [4] A. A. FRAENKEL Y. BAR-HILLEL A. LEVY: Foundations of set theory.North-Holland P. C. 1973. MR 0345816
Reference: [5] P. HÁJEK: On semisets.in: Logic Colloquium '69, North-Holland P. C. 1971, p. 67-76. MR 0289286
Reference: [6] P. HÁJEK: Contributions to the theory of semisets I.Zeitschr. f. Math. Log. 18 (1972), 241-248. MR 0307914
Reference: [7] P. HÁJEK: Degrees of dependence in the theory of semisets.to appear in Fund. Math. (Mostowski's volume). MR 0373890
Reference: [8] P. HÁJEK D. HARMANCOVÁ: On generalized credence functions.Kybernetika (to appeaг).
Reference: [9] G. KREISEL J. L. KRIVINE: Modelltheorie.Springer Verlag, 1972. MR 0351743
Reference: [10] J. MLČEK A. SOCHOR: Contributions to the theory of semisets II.Zeitschr. f. Math. Log. 18 (1972), 407-427. MR 0414357
Reference: [11] A. MOSTOWSKI: Recent results in Set theory.in: Problems in the philosophy of mathematics (Lakatos - ed.), North-Holland P. C. 1967, 82-96.
Reference: [12] G. H. MÜLLER: An old philosophical question - and the recent гesults in the foundations of mathematics.ibid. p. 133-135.
Reference: [13] R. PARIKH: On existence and feasibility in arithmetic.Journ. Symb. Log. 36 (1971), 494-508. MR 0304152
Reference: [14] J. R. SHOENFIELD: Mathematical Logic.Addison-Wesley, 1967. Zbl 0155.01102, MR 0225631
Reference: [15] A. SOCHOR: On semisets defined by non-normal formulas.(in pгeparation). Zbl 0319.02058
Reference: [16] P. VOPӖNKA: The theory of semisets.in: Proc. Int. Congr. of Math. Nice, Gauthier-Villars 1971, p. 255-260. MR 0439633
Reference: [17] P. VOPĚNKA P. HÁJEK: The theory of semisets.Academia Prague and North-Holland P. C. 1972. MR 0444473
Reference: [18] P. ŠTĚPÁNEK: Některé podmodely ultrapгoduktu.(thesis),
.

Files

Files Size Format View
CommentatMathUnivCarol_014-1973-3_2.pdf 1.602Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo