[1] P. M. ANSELONE: 
Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, 1971. 
MR 0443383 | 
Zbl 0228.47001[2] P. M. ANSELONE: 
Collectively compact and totally bounded sets of linear operators. J. Math. Mech. 17 (1968), 613-622. 
MR 0233231 | 
Zbl 0159.43003[3] P. M. ANSELONE: 
Compactness properties of sets of operators and their adjoints. Math. Z. 113 (1970), 233-236. 
MR 0261397[4] P. M. ANSELONE R. H. MOORE: 
Approximate solutions of integral and operator equations. J. Math. Anal. Appl. 9 (1964), 268-277. 
MR 0184448[5] P. M. ANSELONE T. W. PALMER: 
Collectively compact sets of linear operators. Pac. J. Math. 25 (1968), 417-422. 
MR 0227806[6] P. M. ANSELONE T. W. PALMER: 
Spectral analysis of collectively compact strongly convergent operator sequences. Pac. J. Math. 25 (1968), 423-431. 
MR 0227807[7] J. W. DANIEL: 
Collectively compact sets of gradient mappings. Indag. Math. 30 (1968), 270-279. 
MR 0236758 | 
Zbl 0157.45901[8] J. D. De PREE J. A. HIGGINS: 
Collectively compact sets of linear operators. Math. Z. 115 (1970), 366-370. 
MR 0264425[9] M. V. DESHPANDE N. E. JOSHI: 
Collectively compact and semi-compact sets of linear operators in topological vector spaces. Pac. J. Math. 43 (1972), 317-326. 
MR 0324476[10] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex Functions and Orlicz Spaces. Moscow, 1958 (Russian).
[11] J. LLOYD: 
Differentiable mappings on topological vector spaces. Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. 
MR 0333724 | 
Zbl 0274.46033[12] R. H. MOORE: 
Differentiability and convergence of compact nonlinear operators. J. Math. Anal. Appl. 16 (1966), 65-72. 
MR 0196549[13] K. J. PALMER: 
On the complete continuity of differentiate mappings. J. Austr. Math. Soc. 9 (1969), 441-444. 
MR 0243393[14] M. VAINBERG: Variational Methods for the Study of Nonlinear Operators. Moscow, 1956 (Russian).
[15] V. I. AVERBUKH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces. Usp. Mat. Nauk 22 (1967), 201-258 (Russian).
[16] V. I. AVERBUKH O. G. SMOLYANOV: The various definitions of the derivative in linear topological spaces. Usp. Mat. Nauk 23 (1968), 67-113 (Russian).
[17] M. Z. NASHED: 
Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ... . in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. 
MR 0276840