Previous |  Up |  Next

Article

Title: On collective compactness of derivatives (English)
Author: Durdil, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 17
Issue: 1
Year: 1976
Pages: 7-30
.
Category: math
.
MSC: 46A03
MSC: 46E30
MSC: 58C20
MSC: 58C25
idZBL: Zbl 0321.58008
idMR: MR0415664
.
Date available: 2008-06-05T20:50:00Z
Last updated: 2012-04-27
Stable URL: http://hdl.handle.net/10338.dmlcz/105671
.
Reference: [1] P. M. ANSELONE: Collectively Compact Operator Approximation Theory and Applications to Integral Equations.Prentice-Hall, 1971. Zbl 0228.47001, MR 0443383
Reference: [2] P. M. ANSELONE: Collectively compact and totally bounded sets of linear operators.J. Math. Mech. 17 (1968), 613-622. Zbl 0159.43003, MR 0233231
Reference: [3] P. M. ANSELONE: Compactness properties of sets of operators and their adjoints.Math. Z. 113 (1970), 233-236. MR 0261397
Reference: [4] P. M. ANSELONE R. H. MOORE: Approximate solutions of integral and operator equations.J. Math. Anal. Appl. 9 (1964), 268-277. MR 0184448
Reference: [5] P. M. ANSELONE T. W. PALMER: Collectively compact sets of linear operators.Pac. J. Math. 25 (1968), 417-422. MR 0227806
Reference: [6] P. M. ANSELONE T. W. PALMER: Spectral analysis of collectively compact strongly convergent operator sequences.Pac. J. Math. 25 (1968), 423-431. MR 0227807
Reference: [7] J. W. DANIEL: Collectively compact sets of gradient mappings.Indag. Math. 30 (1968), 270-279. Zbl 0157.45901, MR 0236758
Reference: [8] J. D. De PREE J. A. HIGGINS: Collectively compact sets of linear operators.Math. Z. 115 (1970), 366-370. MR 0264425
Reference: [9] M. V. DESHPANDE N. E. JOSHI: Collectively compact and semi-compact sets of linear operators in topological vector spaces.Pac. J. Math. 43 (1972), 317-326. MR 0324476
Reference: [10] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex Functions and Orlicz Spaces.Moscow, 1958 (Russian).
Reference: [11] J. LLOYD: Differentiable mappings on topological vector spaces.Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. Zbl 0274.46033, MR 0333724
Reference: [12] R. H. MOORE: Differentiability and convergence of compact nonlinear operators.J. Math. Anal. Appl. 16 (1966), 65-72. MR 0196549
Reference: [13] K. J. PALMER: On the complete continuity of differentiate mappings.J. Austr. Math. Soc. 9 (1969), 441-444. MR 0243393
Reference: [14] M. VAINBERG: Variational Methods for the Study of Nonlinear Operators.Moscow, 1956 (Russian).
Reference: [15] V. I. AVERBUKH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces.Usp. Mat. Nauk 22 (1967), 201-258 (Russian).
Reference: [16] V. I. AVERBUKH O. G. SMOLYANOV: The various definitions of the derivative in linear topological spaces.Usp. Mat. Nauk 23 (1968), 67-113 (Russian).
Reference: [17] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ....in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. MR 0276840
.

Files

Files Size Format View
CommentatMathUnivCarol_017-1976-1_2.pdf 1.704Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo