Title:
|
On collective compactness of derivatives (English) |
Author:
|
Durdil, Jiří |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
17 |
Issue:
|
1 |
Year:
|
1976 |
Pages:
|
7-30 |
. |
Category:
|
math |
. |
MSC:
|
46A03 |
MSC:
|
46E30 |
MSC:
|
58C20 |
MSC:
|
58C25 |
idZBL:
|
Zbl 0321.58008 |
idMR:
|
MR0415664 |
. |
Date available:
|
2008-06-05T20:50:00Z |
Last updated:
|
2012-04-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105671 |
. |
Reference:
|
[1] P. M. ANSELONE: Collectively Compact Operator Approximation Theory and Applications to Integral Equations.Prentice-Hall, 1971. Zbl 0228.47001, MR 0443383 |
Reference:
|
[2] P. M. ANSELONE: Collectively compact and totally bounded sets of linear operators.J. Math. Mech. 17 (1968), 613-622. Zbl 0159.43003, MR 0233231 |
Reference:
|
[3] P. M. ANSELONE: Compactness properties of sets of operators and their adjoints.Math. Z. 113 (1970), 233-236. MR 0261397 |
Reference:
|
[4] P. M. ANSELONE R. H. MOORE: Approximate solutions of integral and operator equations.J. Math. Anal. Appl. 9 (1964), 268-277. MR 0184448 |
Reference:
|
[5] P. M. ANSELONE T. W. PALMER: Collectively compact sets of linear operators.Pac. J. Math. 25 (1968), 417-422. MR 0227806 |
Reference:
|
[6] P. M. ANSELONE T. W. PALMER: Spectral analysis of collectively compact strongly convergent operator sequences.Pac. J. Math. 25 (1968), 423-431. MR 0227807 |
Reference:
|
[7] J. W. DANIEL: Collectively compact sets of gradient mappings.Indag. Math. 30 (1968), 270-279. Zbl 0157.45901, MR 0236758 |
Reference:
|
[8] J. D. De PREE J. A. HIGGINS: Collectively compact sets of linear operators.Math. Z. 115 (1970), 366-370. MR 0264425 |
Reference:
|
[9] M. V. DESHPANDE N. E. JOSHI: Collectively compact and semi-compact sets of linear operators in topological vector spaces.Pac. J. Math. 43 (1972), 317-326. MR 0324476 |
Reference:
|
[10] M. A. KRASNOSELSKIJ J. B. RUTICKIJ: Convex Functions and Orlicz Spaces.Moscow, 1958 (Russian). |
Reference:
|
[11] J. LLOYD: Differentiable mappings on topological vector spaces.Studia Math. 45 (1973), 147-160 and 49 (1973-4), 99-100. Zbl 0274.46033, MR 0333724 |
Reference:
|
[12] R. H. MOORE: Differentiability and convergence of compact nonlinear operators.J. Math. Anal. Appl. 16 (1966), 65-72. MR 0196549 |
Reference:
|
[13] K. J. PALMER: On the complete continuity of differentiate mappings.J. Austr. Math. Soc. 9 (1969), 441-444. MR 0243393 |
Reference:
|
[14] M. VAINBERG: Variational Methods for the Study of Nonlinear Operators.Moscow, 1956 (Russian). |
Reference:
|
[15] V. I. AVERBUKH O. G. SMOLYANOV: The theory of differentiation in linear topological spaces.Usp. Mat. Nauk 22 (1967), 201-258 (Russian). |
Reference:
|
[16] V. I. AVERBUKH O. G. SMOLYANOV: The various definitions of the derivative in linear topological spaces.Usp. Mat. Nauk 23 (1968), 67-113 (Russian). |
Reference:
|
[17] M. Z. NASHED: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials ....in Nonlinear Functional Analysis and Applications (ed. J. B. Rall), New York 1971. MR 0276840 |
. |