Previous |  Up |  Next

Article

Title: On the existence of weak solutions for some quasilinear elliptic variational boundary value problems at resonance (English)
Author: Hetzer, Georg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 17
Issue: 2
Year: 1976
Pages: 315-334
.
Category: math
.
MSC: 35D05
MSC: 35J60
MSC: 35J65
MSC: 47B10
MSC: 47B30
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0326.35033
idMR: MR0412602
.
Date available: 2008-06-05T20:51:13Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105697
.
Reference: [1] F. E. BROWDER: Existence theorems for nonlinear partial differential equations.Proc. Symp. Pure Math. 16, Amer. Math. Soc. (1970), edited by: Shing-Shen Chern and Stefan Smale. Zbl 0211.17204, MR 0269962
Reference: [2] D. G. DE FIGUEIREDO: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolinae 15 (1974). 415-428. Zbl 0296.35038, MR 0365254
Reference: [3] D. G. DE FIGUEIREDO: The Dirichilet problem for nonlinear elliptic equations: A Hilbert space approach.Partial differential equations and related topics, Lecture Notes 446 (1975), edited by K. A. Goldstein. MR 0437924
Reference: [4] S. FUČÍK M. KUČERA J. NEČAS: Ranges of nonlinear asymptotically linear operators.J. Diff. Eq. 17 (1975), 375-394. MR 0372696
Reference: [5] P. HESS: On a theorem by Landesman and Lazer.Indiana Univ. Math. J. 23 (1974), 827-829. Zbl 0259.35036, MR 0352687
Reference: [6] G. HETZER: Some remarks on $\phi_+$-operators and on the coincidence degree for a Fredholm equation with noncompact nonlinear perturbations.Ann. Soc. Scient. Bruxelles 89 (1975), 553-564. Zbl 0316.47041, MR 0385653
Reference: [7] G. HETZER: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type.Comment. Math. Univ. Carolinae 16 (1975), 121-138. Zbl 0298.47034, MR 0364814
Reference: [8] G. HETZER V. STALLBOHM: Eine Existenzaussage für asymptotisch lineare Störungen eines Fredholmoperators mit Index $0$.to appear. MR 0458262
Reference: [9] G. HETZER V. STALLBOHM: Coincidence degree and Rabinowitz's bifurcation theorem.to appear.
Reference: [10] E. M. LANDESMAN A. C. LAZER: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19 (1970), 609-623. MR 0267269
Reference: [11] J. MAWHIN: Nonlinear perturbations of Fredholm mappings in normed spaces and applications to differential equations.Trabalho de Matematica No 61, Univ. of Brasilia (1974).
Reference: [12] J. NEČAS: Les méthodes directes en théorie des équations elliptiques.Paris (1967). MR 0227584
Reference: [13] J. NEČAS: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolinae 14 (1973), 63-72. MR 0318995
Reference: [14] L. NIRENBERG: An application of generalized degree to a class of nonlinear problems.Proc. Symp. Functional Anal., Liège (1971). Zbl 0317.35036, MR 0413207
Reference: [15] M. SCHECHTER: A nonlinear elliptic boundary value problem.Ann. Scu. Norm. Sup. Pisa, Ser. III, 27 (1973), 707-716. MR 0369912
Reference: [16] C. A. STUART: Some bifurcation theory for $k$-set-contractions.Proc. London Math. Soc. (3) 27 (1973), 531-550. Zbl 0268.47064, MR 0333856
Reference: [17] S. A. WILLIAMS: A sharp sufficient condition for solutions of a nonlinear elliptic boundary value problem.J. Differ. Eq. 8 (1970), 580-586. MR 0267267
.

Files

Files Size Format View
CommentatMathUnivCarol_017-1976-2_10.pdf 1.525Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo