[1] P. M. ANSELONE: 
Collectively Compact Operator Approximation Theory. Prentice-Hall, Englewood Cliffs, New Jersey (1971). 
MR 0443383 | 
Zbl 0228.47001[2] P. M. ANSELONE J. W. LEE: 
Spectral properties of integral operators with nonnegative kernels. Linear Algebra and its Appl. 9, 67-87 (1974). 
MR 0361905[4] F. L. BAUER E. DEZTSCH J. STOER: 
Abschätzungen für Eigenwerte positiver linearer Operatoren. Linear Algebra and its Appl. 2, 275-301 (1969). 
MR 0245587[5] G. BIRKHOFF: 
Extensions of Jentzsch's theorem. Trans. Amer. Math. Soc. 85, 219-227 (1957). 
MR 0087058 | 
Zbl 0079.13502[6] E. DEUTSCH, Ch. ZENGER: 
Inclusion domains for the eigenvalues of stochastic matrices. Numer. Math. 18, 182-192 (1971). 
MR 0301908[7] G. FROBENIUS: Über Matrizen aus positiven Elementen. Akad. Wiss. Berlin, 471-476 (1908).
[8] G. FROBENIUS: Über Matrizen aus nicht negativen Elementen. Akad. Wiss. Berlin, 456-477 (1912).
[9] E. HOPF: 
An inequality for positive linear integral operators. J. of Math, and Mech. 12, 683-692 (1963). 
MR 0165325 | 
Zbl 0115.32501[10] R. JENTZSCH: Über Integralgleichungen mit positlvem Kern. Crelles Journal 141, 235-244 (1912).
[11] I. MAREK: 
Spektrale Eigenschaften der $K$-positiven Operatoren und Einschliessungssätze für den Spektralradius. Czechosl. math. J. 16 (91), 493-517  (1966). 
MR 0217622 | 
Zbl 0152.33701[12] A. OSTROWSKI: 
Positive matrices and functional analysis. in Recent  Advances in Matrix Theory, Univ. of Wisconsin Press, Madison 81-101 (1964). 
MR 0169858 | 
Zbl 0135.01504[13] O. PERRON: Zur Theorie der Matrizen. Math. Ann. 64, 248-263 (1908).