Previous |  Up |  Next

Article

Title: Eine Eigenwertabschätzung für Integraloperatoren mit stochastischen Kernen (German)
Title: An estimate of eigenvalues of an integral operators with stochastic kerns (English)
Author: Rhodius, Adolf
Language: German
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 18
Issue: 1
Year: 1977
Pages: 183-193
.
Category: math
.
MSC: 15A42
MSC: 15A51
MSC: 45C05
MSC: 47B99
MSC: 47G05
MSC: 47Gxx
idZBL: Zbl 0354.45005
idMR: MR0454749
.
Date available: 2008-06-05T20:54:07Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105762
.
Reference: [1] P. M. ANSELONE: Collectively Compact Operator Approximation Theory.Prentice-Hall, Englewood Cliffs, New Jersey (1971). Zbl 0228.47001, MR 0443383
Reference: [2] P. M. ANSELONE J. W. LEE: Spectral properties of integral operators with nonnegative kernels.Linear Algebra and its Appl. 9, 67-87 (1974). MR 0361905
Reference: [3] F. L. BAUER: An elementary proof of the Hopf inequality.Num. Math. 7, 331-337 (1965). Zbl 0148.38103, MR 0188785
Reference: [4] F. L. BAUER E. DEZTSCH J. STOER: Abschätzungen für Eigenwerte positiver linearer Operatoren.Linear Algebra and its Appl. 2, 275-301 (1969). MR 0245587
Reference: [5] G. BIRKHOFF: Extensions of Jentzsch's theorem.Trans. Amer. Math. Soc. 85, 219-227 (1957). Zbl 0079.13502, MR 0087058
Reference: [6] E. DEUTSCH, Ch. ZENGER: Inclusion domains for the eigenvalues of stochastic matrices.Numer. Math. 18, 182-192 (1971). MR 0301908
Reference: [7] G. FROBENIUS: Über Matrizen aus positiven Elementen.Akad. Wiss. Berlin, 471-476 (1908).
Reference: [8] G. FROBENIUS: Über Matrizen aus nicht negativen Elementen.Akad. Wiss. Berlin, 456-477 (1912).
Reference: [9] E. HOPF: An inequality for positive linear integral operators.J. of Math, and Mech. 12, 683-692 (1963). Zbl 0115.32501, MR 0165325
Reference: [10] R. JENTZSCH: Über Integralgleichungen mit positlvem Kern.Crelles Journal 141, 235-244 (1912).
Reference: [11] I. MAREK: Spektrale Eigenschaften der $K$-positiven Operatoren und Einschliessungssätze für den Spektralradius.Czechosl. math. J. 16 (91), 493-517 (1966). Zbl 0152.33701, MR 0217622
Reference: [12] A. OSTROWSKI: Positive matrices and functional analysis.in Recent Advances in Matrix Theory, Univ. of Wisconsin Press, Madison 81-101 (1964). Zbl 0135.01504, MR 0169858
Reference: [13] O. PERRON: Zur Theorie der Matrizen.Math. Ann. 64, 248-263 (1908).
.

Files

Files Size Format View
CommentatMathUnivCarol_018-1977-1_19.pdf 812.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo