Previous |  Up |  Next

Article

Title: When finely continuous functions are of the first class of Baire (English)
Author: Lukeš, Jaroslav
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 18
Issue: 4
Year: 1977
Pages: 647-657
.
Category: math
.
MSC: 26A15
MSC: 26A21
MSC: 26A24
MSC: 31D05
MSC: 35D05
MSC: 54C50
MSC: 54D15
idZBL: Zbl 0375.26004
idMR: MR0457646
.
Date available: 2008-06-05T20:56:13Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105809
.
Reference: [1] H. BLUMBERG: A theorem on arbitrary functions of two variables with applications.Fund. Math. 16 (1930), 17-24.
Reference: [2] C. CONSTANTINESCU A. CORNEA: Potential theory on harmonic spaces.Springer-Verlag, Berlin, 1972. MR 0419799
Reference: [3] A. DENJOY: Sur les fonctions dérivées sommables.Bull. Soc. Math. France 43 (1916), 161-248. MR 1504743
Reference: [4] B. FUGLEDE: The quasi topology associated with a countably subadditive set function.Ann. Inst. Fourier 21 (1971), 123-169. Zbl 0197.19401, MR 0283158
Reference: [5] B. FUGLEDE: Connexion en topologie fine et balayage des mesures.Ann. Inst. Fourier 21 (1971), 227-244. Zbl 0208.13802, MR 0344502
Reference: [6] B. FUGLEDE: Remarks on fine continuity and the base operation in potential theory.Math. Ann. 210 (1974), 207-212. Zbl 0273.31014, MR 0357826
Reference: [7] C. GOFFMAN C. J. NEUGEBAUER: On approximate derivatives.Proc. Amer. Math. Soc. 11 (1960),962-966. MR 0118792
Reference: [8] C. GOFFMAN C. NEUGEBAUER T. NISHIURA: Density topology and approximate continuity.Duke Math. J. 28 (1961), 497-505. MR 0137805
Reference: [9] C. GOFFMAN D. WATERMAN: Approximately continuous transformations.Proc. Amer. Math. Soc. 12 (1961), 116-121. MR 0120327
Reference: [10] O. HAUPT, Ch. PAUC: La topologie de Denjoy envisagée comme vraie topologie.C.R. Acad. Sci Paris 234 (1952), 390-392. MR 0046408
Reference: [11] V. JARNÍK: Sur les fonctions de la première classe de Baire.Bull. Internat. Acad. Sci. Boheme (1926).
Reference: [12] N. F. G. MARTIN: A topology for certain measure spaces.Trans. Amer. Math. Soc. 112 (1964), 1-18. Zbl 0125.30402, MR 0161953
Reference: [13] L. MIŠÍK: Notes on an approximate derivative.Mat. časopis Sloven. Akad. Vied 22 (1972), 108-114. MR 0315057
Reference: [14] I. NETUKA L. ZAJÍČEK: Functions continuous in the fiine topology for the heat equation.Časopis Pěst. Mat. 99 (1974), 300-306. MR 0352505
Reference: [15] D. PREISS: Approximate derivative and Baire classes.Czechoslovak Math. J. 21 (1971), 373-382. MR 0286951
Reference: [16] J. RIDDER: Über approximativ stetigen Funktionen.Fund. Math. 13 (1929), 201-209.
Reference: [17] S. SAKS: Theory of the integral.New York, 1937. Zbl 0017.30004
Reference: [18] L. E. SNYDER: The Baire classification of ordinary and approximate partial derivatives.Proc. Amer. Math. Soc. 17 (1966), 115-123. Zbl 0142.30501, MR 0186768
Reference: [19] L. E. SNYDER: Approximate Stolz angle limits.Proc. Amer. Math. Soc. 17 (1966), 416-422. Zbl 0158.05102, MR 0188383
Reference: [20] G. TOLSTOV: Sur la dérivée approximative exacte.Mat. Sb. 4 (1938), 499-504. Zbl 0021.01602
Reference: [21] R. S. TROYER W. P. ZIEMER: Topologies generated by outer measures.J. Math. Mech. 12 (1963), 485-494. MR 0147600
.

Files

Files Size Format View
CommentatMathUnivCarol_018-1977-4_3.pdf 845.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo