Previous |  Up |  Next

Article

Title: Nonlinear equations with linear part at resonance: Variational approach (English)
Author: Fučík, Svatopluk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 18
Issue: 4
Year: 1977
Pages: 723-734
.
Category: math
.
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0376.47030
idMR: MR0500339
.
Date available: 2008-06-05T20:56:29Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105815
.
Reference: [1] S. AHMAD A. C. LAZER J. L. PAUL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance.Indiana Univ. Math. Journal 25 (1976), 933-944. MR 0427825
Reference: [2] M. S. BERGER M. SCHECHTER: On the solvability of semilinear operator equations and elliptic boundary value problems.Bull. Amer. Math. Soc. 78 (1972), 741-745. MR 0303374
Reference: [3] S. FUČÍK: Nonlinear potential equations with linear parts at resonance.(to appear). MR 0482425
Reference: [4] S. FUČÍK J. NEČAS V. SOUČEK: Variationsrechnung.Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. MR 0487654
Reference: [5] A. C. LAZER E. M. LANDESMAN D. R. MEYERS: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence.J. Math. Anal. Appl. 52 (1975), 594-614. MR 0420389
Reference: [6] A. C. LAZER: Some resonance problems for elliptic boundary value problems.Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. MR 0487005
Reference: [7] M. M. VAJNBERG: Variational methods for the study of nonlinear operators.(Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. MR 0176364
.

Files

Files Size Format View
CommentatMathUnivCarol_018-1977-4_9.pdf 614.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo