Title:
|
Nonlinear equations with linear part at resonance: Variational approach (English) |
Author:
|
Fučík, Svatopluk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
18 |
Issue:
|
4 |
Year:
|
1977 |
Pages:
|
723-734 |
. |
Category:
|
math |
. |
MSC:
|
47H15 |
MSC:
|
47J05 |
idZBL:
|
Zbl 0376.47030 |
idMR:
|
MR0500339 |
. |
Date available:
|
2008-06-05T20:56:29Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/105815 |
. |
Reference:
|
[1] S. AHMAD A. C. LAZER J. L. PAUL: Elementary critical point theory and perturbations of elliptic boundary value problems at resonance.Indiana Univ. Math. Journal 25 (1976), 933-944. MR 0427825 |
Reference:
|
[2] M. S. BERGER M. SCHECHTER: On the solvability of semilinear operator equations and elliptic boundary value problems.Bull. Amer. Math. Soc. 78 (1972), 741-745. MR 0303374 |
Reference:
|
[3] S. FUČÍK: Nonlinear potential equations with linear parts at resonance.(to appear). MR 0482425 |
Reference:
|
[4] S. FUČÍK J. NEČAS V. SOUČEK: Variationsrechnung.Teubner Texte zur Mathematik, Teubner, Leipzig, 1977. MR 0487654 |
Reference:
|
[5] A. C. LAZER E. M. LANDESMAN D. R. MEYERS: On saddle point problems in the calculus of variations, the Ritz algorithm, and monotone convergence.J. Math. Anal. Appl. 52 (1975), 594-614. MR 0420389 |
Reference:
|
[6] A. C. LAZER: Some resonance problems for elliptic boundary value problems.Lecture Notes in Pure and Applied Mathematics No 19: Nonlinear Functional Analysis and Differential Equations (ed.: L. Cesari, R. Kannan, J.D. Schuur), pp. 269-289. M. Dekker Inc., New York and Basel, 1976. MR 0487005 |
Reference:
|
[7] M. M. VAJNBERG: Variational methods for the study of nonlinear operators.(Russian), Moscow 1956. English transl.: Holden-Day, San Francisco, California 1964. MR 0176364 |
. |