Previous |  Up |  Next

Article

Title: On rough norms on Banach spaces (English)
Author: John, Kamil
Author: Zizler, Václav E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 19
Issue: 2
Year: 1978
Pages: 335-349
.
Category: math
.
MSC: 46B20
MSC: 46B99
MSC: 46G05
idZBL: Zbl 0374.46014
idMR: MR500126
.
Date available: 2008-06-05T20:58:21Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105857
.
Reference: [1] R. ANANTHARAMAN T. LEWIS J. H. M. WHITFIELD: Smoothability, strong smoothability and dentability in Banach spaces.to appear. MR 0611210
Reference: [2] D. CUDIA: The geometry of Banach spaces. Smoothness.Trans. Amer. Math. Soc. 110 (1964), 284-314. Zbl 0123.30701, MR 0163143
Reference: [3] J. B. COLIER: A class of strong differentiability spaces.Proc. Amer. Math. Soc. 53 (1975), 420-422 MR 0388044
Reference: [4] M. M. DAY: Strict convexity and smoothness of normed spaces.Trans. Amer. Math. Soc. 78 (1955), 516-528. Zbl 0068.09101, MR 0067351
Reference: [5] J. DIESTEL: Geometry of Banach spaces. Selected topics.Lecture Notes in Math. 485 (1975), Springer-Verlag. Zbl 0307.46009, MR 0461094
Reference: [6] M. EDELSTEIN: Smoothability versus dentability.Comment. Math. Univ. Carolinae 14 (1973), 127-133. Zbl 0264.46013, MR 0320708
Reference: [7] M. EDELSTEIN: Concerning dentability.Pacific J. Math. 46 (1973), 111-114. Zbl 0259.46018, MR 0324378
Reference: [8] K. JOHN V. ZIZLER: A note on strong differentiability spaces.Comment. Math. Univ. Carolinae 17 (1976), 127-134. MR 0402469
Reference: [9] D. C. KEMP: A note on smoothability in Banach spaces.Math. Ann. 218 (1975), 211-217. Zbl 0302.46031, MR 0399808
Reference: [10] J. KURZWEIL: On approximation in real Banach spaces.Studia Math. 14 (1954), 214-231. MR 0068732
Reference: [11] E. B. LEACH J. H. M. WHITFIELD: Differentiable functions and rough norms on Banach spaces.Proc. Amer. Math. Soc. 33 (1972), 120-126. MR 0293394
Reference: [12] T. LEWIS: On the duality between smoothability and dentability.Proc. Amer. Math. Soc. 63 (1977), 239-244. Zbl 0352.46008, MR 0445275
Reference: [13] I. NAMIOKA R. R. PHELPS: Banach spaces which are Asplund spaces.Duke Mat. J. 42 (1975), 735-749. MR 0390721
Reference: [14] R. R. PHELPS: Dentability and extreme points in Banach spaces.J. Functional Analysis 16 (1974), 78-90. Zbl 0287.46026, MR 0352941
Reference: [15] R. R. PHELPS: Differentiability of convex functions on Banach spaces.Lecture notes, London 1978.
Reference: [16] Ch. STEGALL: The duality between Asplund spaces and spaces with the Radon Nikodym property.Israel J. Math., to appear Zbl 0374.46015, MR 0493268
Reference: [17] Ch. STEGALL: The Radon Nikodym property in conjugate Banach spaces.Trans. Amer. Math. Soc. 206 (1975), 213-223. Zbl 0318.46056, MR 0374381
Reference: [18] Ch. STEGALL: The Radon Nikodym property in conjugate Banach spaces II.Trans. Amer. Math. Soc., to appear. Zbl 0475.46016, MR 0603779
Reference: [19] F. SULLIVAN: Dentability, smoothability and stronger properties in Banach spaces.Indiana Univ. Math. J. 26 (1977), 545-553. Zbl 0376.46010, MR 0438088
Reference: [20] F. SULLIVAN: On the duality between Asplund spaces and spaces with the Radon Nikodym property.to appear. Zbl 0384.46009, MR 0482090
.

Files

Files Size Format View
CommentatMathUnivCarol_019-1978-2_10.pdf 1.197Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo