Previous |  Up |  Next

Article

Title: Remarks on the non self-adjoint Schrödinger operator (English)
Author: Fortunato, Donato
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 20
Issue: 1
Year: 1979
Pages: 79-93
.
Category: math
.
MSC: 35J10
MSC: 35P05
MSC: 47F05
idZBL: Zbl 0388.35018
idMR: MR526148
.
Date available: 2008-06-05T21:00:23Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105903
.
Reference: [1] V. BENCI D. FORTUNATO: Discreteness conditions of the spectrum of Schrödinger operators.J. Math. Anal. and Appl. 64 (1978), 695-700. MR 0481616
Reference: [2] F. E. BROWDER: On the spectral theory of elliptic differential operators.Mat. Annalen 142 (1961), 22-130. Zbl 0104.07502, MR 0209909
Reference: [3] I. M. GLAZMAN: Direct methods of the qualitative spectral analysis of singular differential operators.Israel Program of Translations, Jerusalem (1965). MR 0190800
Reference: [4] T. KATO: Perturbation theory for linear operators.Springer Verlag, New York (1966). Zbl 0148.12601, MR 0203473
Reference: [5] T. KATO: Schrödinger operators with singular potentials.Israel J. Math. 13 (1973), 135-148. Zbl 0246.35025, MR 0333833
Reference: [6] V. B. LIDSKII: Conditions for the complete continuity of the resolvent of a nonself-adjoint differential operators.Dokl. Akad. Nauk SSSR 113 (1957), 28-31. MR 0091385
Reference: [7] A. M. MOLCHANOV: The conditions for the discreteness of the spectrum of self-adjoint second-order differential equations.Trudy Moskov. Mat. Obšč. 2 (1953), 169-300. MR 0057422
Reference: [8] M. A. NAIMARK: The spectrum of singular non self-adjoint second order differential operators.Dokl. Akad. Nauk SSSR (1952), 41-44. MR 0051402
Reference: [9] B. S. PAVLOV: The non self-adjoint Schrödinger operator.Topics Math. Phys. 1 (1967), 83-113.
Reference: [10] M. REED B. SIMON: Methods of modern Mathematical Physics, I.Academic Press New York (1972). MR 0751959
Reference: [11] M. SCHECHTER: Principles of functional analysis.Academic Press, New York (1971). Zbl 0211.14501, MR 0445263
Reference: [12] T. KATO: On some Schrödinger operators with a singular complex potential.Ann. Sc. Norm. Sup. Pisa 5 (1978), 105-114. Zbl 0376.47021, MR 0492961
.

Files

Files Size Format View
CommentatMathUnivCarol_020-1979-1_7.pdf 941.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo