Previous |  Up |  Next

Article

Title: Least and largest initial completions. II. (English)
Author: Adámek, Jiří
Author: Herrlich, Horst
Author: Strecker, George E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 20
Issue: 1
Year: 1979
Pages: 59-77
.
Category: math
.
MSC: 18A15
MSC: 18A25
MSC: 18A35
MSC: 18B15
MSC: 18D30
idZBL: Zbl 0404.18006
idMR: MR0526147
.
Date available: 2008-06-05T21:00:20Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105902
.
Related article: http://dml.cz/handle/10338.dmlcz/105901
.
Reference: [AHS] ADÁMEK J. H. HERRLICH G. E. STRECKER: The structure of initial completions.Preprint. MR 0558103
Reference: [AK1] ADÁMEK J. V. KOUBEK: What to embed into a cartesian closed topological category.Comment. Math. Univ. Carolinae 18 (1977), 817-821. MR 0460413
Reference: [AK2] ADÁMEK J. V. KOUBEK: Cartesian closed fibre-completions.Preprint.
Reference: [An1] ANTOINE P.: Étude élementaire d'ensembles structures.Bull. Soc. Math. Belgique 18 (1966), 144-166 and 337-414.
Reference: [An2] ANTOINE P.: Catégories fermées et quasi-topologies III.Preprint.
Reference: [BT] BORGER R. W. THOLEN: Is any semi-topological functor topologically algebraic?.Preprint.
Reference: [D] DAY B.: A reflection theorem for closed categories.J. Pure Appl. Algebra 2 (1972), 1-11. Zbl 0236.18004, MR 0296126
Reference: [FS] FRIED E. J. SICHLER: Homomorphisms of integral domains.Trans. Amer. Math. Soc. 225 (1972), 163-182. MR 0422382
Reference: [GS] GRATZER G. J. SICHLER: On the endomorphism semigroup (and category) of bounded lattices.Proc. Amer. Math. Soc. 34 (1972), 67-70.
Reference: [He1] HERRLICH H.: Initial completions.Math. Z. 150 (1976), 101-110. Zbl 0319.18001, MR 0437614
Reference: [He2] HERRLICH H.: Cartesian closed topological categories.Math. Colloq. Univ. Cape Town IX (1974), 1-16. Zbl 0318.18011, MR 0460414
Reference: [Ho] HOFFMANN R.-E.: Note on universal topological completion.Preprint. Zbl 0429.18002, MR 0548489
Reference: [HL] HEDRLÍN Z. J. Lambek: How comprehensive is the category of semigroups?.J. Algebra 11 (1969), 195-212. MR 0237611
Reference: [HNST] HERRLICH H. R. NAKAGAWA G. E. STRECKER T. TITCOMB: Semitopological and topologically-algebraic functors (are and are not equivalent).Preprint.
Reference: [HP1] HEDRLÍN Z. A. PULTR: On full embeddings of categories of algebras.Illinois J. Math. 10 (1966), 392-406. MR 0191858
Reference: [HP2] HEDRLÍN Z. A. PULTR: Symmetric relations (undirected graphs) with given semigroups.Monatsh. Math. 69 (1965), 318-322. MR 0188082
Reference: [HS1] HERRLICH H. G. E. STRECKER: Category Theory.Allyn and Bacon, Boston, 1973. MR 0349791
Reference: [HS2] HERRLICH H. G. E. STRECKER: Semi-universal maps and universal initial completions.Preprint. MR 0569338
Reference: [Hu] HUŠEK M.: $S$-categories.Comment. Math. Univ. Carolinae 5 (1964), 37-46. MR 0174027
Reference: [Ko] KOUBEK V.: Each concrete category has a representation by $T_2$ paracompact topological spaces.Comment. Math. Univ. Carolinae 15 (1974), 655-663. Zbl 0291.54019, MR 0354806
Reference: [Ku] KUČERA L.: Úplná vnoření struktur.Dissertation, Charles University, Praha 1973.
Reference: [KP] KUČERA L., A. PULTR: On a mechanism of defining morphisms in concrete categories.Cahiers Topol. Geom. Diff. 13 (1972), 397-410. MR 0393173
Reference: [Ma] MANES E. G.: Algebraic Theories.Springer Verlag 1975. MR 0419557
Reference: [P] PORST H. E.: Characterization of Mac Neille completions and topological functors.Preprint.
Reference: [PS] PULTR A. J. SICHLER: Primitive classes of algebras with two unary idempotent operations, containing all algebraic categories as full subcategories.Comment. Math. Univ. Carolinae 10 (1969), 425-440. MR 0253969
Reference: [S] SICHLER J.: Non-constant endomorphisms of lattices.Proc. Amer. Math. Soc. 34 (1972), 67-70. MR 0291032
Reference: [T1] TRNKOVÁ V.: All small categories are representable by continuous non-constant mappings of bicompacta.Dokl. Akad. Nauk SSSR 230 (1976), 1403-1405. MR 0417259
Reference: [T2] TRNKOVÁ V.: Non-constant continuous mappings of metric or compact Hausdorff spaces.Comment. Math. Univ. Carolinae 13 (1972), 283-295. MR 0303486
.

Files

Files Size Format View
CommentatMathUnivCarol_020-1979-1_6.pdf 1.165Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo