Previous |  Up |  Next

Article

Title: On the existence of solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory. I. (English)
Author: Tarafdar, Enayat
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 21
Issue: 4
Year: 1980
Pages: 805-823
.
Category: math
.
MSC: 47A50
MSC: 47A55
MSC: 47H10
MSC: 47H15
MSC: 47J05
idZBL: Zbl 0463.47046
idMR: MR597769
.
Date available: 2008-06-05T21:06:48Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106045
.
Related article: http://dml.cz/handle/10338.dmlcz/106052
.
Reference: [1] CARADUS S. R.: Perturbation theory for generalized Fredholm operators.Pacific J. Math. 52 (1974), 11-15. Zbl 0267.47010, MR 0353034
Reference: [2] CARADUS S. R.: Perturbation theory for generalized Fred-holm operators, II.Transactions Amer. Math. Soc. 62 (1977), 72-76. MR 0435896
Reference: [3] DOLPH C. L., MINTY G. J.: On nonlinear integral equations of the Hammerstein type, "Integral Equations".Madison Univ. Press, lilladison, 111 (1964), 99-154. Zbl 0123.29603, MR 0161113
Reference: [4] EHRMANN H.: Existenzsätze für die Lösungen gewisser nicht-linear Rand-wertaufgaben.Z. Angew. Math. Mech. 45 (1965), 22-29; Abh. Deutsch. Akad. tfiss. Berlin Kl. MR 0205123
Reference: [5] GAINES R. E., MAWHIN J. L.: Coincidence degree and non-linear differential Equations.Lecture Notes in Mathematics, No. 568 (Edited by Dold A. and Eckmann B.), Springer-Verlag (1977). MR 0637067
Reference: [6] HETZER G.: Some remarks on $\phi_+$ operators and on the co-incidence degree for Fredholm equation with non-compact nonlinear perturbation.Ann. Soc. Sci. Bruxells Ser. I 89 (1975), 497-508. MR 0385653
Reference: [7] HETZER G.: Some applications of the coincidence degree for set-contractions to functional differential equations of neutral type.Comment. Math. Univ. Carolinae 16 (1975), 121-138. Zbl 0298.47034, MR 0364814
Reference: [8] KELLET J. L., NAMIOKA I.: Linear Topological Spaces.Graduate Texts in Mathematics, 36, Springer-Verlag (1964).
Reference: [9] MAWHIN J. : Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locality convex topological vector spaces.J. Differential Equations 12 (1972), 610-636. MR 0328703
Reference: [10] TARAFDAR E.: On the existence of the solution of the equation $L(x) = N(x)$ and a generalized coincidence degree theory II.Comment. Math. Univ. Carolinae 21 (1980). MR 0597769
.

Files

Files Size Format View
CommentatMathUnivCarol_021-1980-4_16.pdf 1.351Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo