[1] J. VANŽURA: 
Simultaneous integrability of an almost tangent structure and a distribution. preprint. 
MR 0895009[2] J. LEHMANN, LEJEUNE: 
Intégrabilité des $G$-structures définies par une $1$-forme $0$-déformable a valeurs dans le fibre tangent. Ann. Inst. Fourier, Grenoble 16, 2 (1966), 329-387. 
MR 0212720 | 
Zbl 0145.42103[3] Ch.-Sh. HOUH: 
The integrability of a structure on a differentiable manifold. Tôhoku Math. J. 1965, 17, 72-75. 
MR 0187172 | 
Zbl 0125.39605[4] Y. HATAKEYAMA: 
On the integrability of a structure defined by two semisimple $0$-deformable vector $1$-forms which commute with each other. Tôhoku Math. J. 1965, 17, No. 2, 171-177. 
MR 0184164[5] Ch. HSU C.-S. HOUH: 
Note on the integrability conditions of $(\varphi, \psi)$ structures. Tôhoku Math. J. 1966, 18, No. 4, 368-377. 
MR 0216418[6] C.-S. HOUH: 
Hung-Ching Chow Sixty-Fifth Anniversary Volume. Math. Research Center Nat. Taiwan Univ., dec. 1967. 
MR 0224408[7] Sh. HASHIMOTO: 
On the differentiable manifold admitting tensor fields $(F,G)$ of type $(1,1)$ satisfying $F^3 + F = 0, G^3 + G = 0, FG = - GF, F^2 = G^2$. Tensor 1964, 15, No. 3, 269-274. 
MR 0169184[8] V. KUBÁT: 
Simultaneous integrability of two $J$-related almost tangent structures. Comment. Math. Univ. Carolinae 20 (1979), 461-473. 
MR 0550448[9] J. BUREŠ J. VANŽURA: 
A Nijennuis-type tensor on the quotient of a distribution. Comment. Math. Univ. Carolinae 21 (1980), 201-208. 
MR 0580677[10] J. BUREŠ J. VANŽURA: Simultaneous integrability of analmost complex and an almost tangent structure. Czech. Math. Journal (in print).