Title:
|
On simultaneous integrability of two commuting almost tangent structures (English) |
Author:
|
Kubát, Václav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
22 |
Issue:
|
1 |
Year:
|
1981 |
Pages:
|
149-160 |
. |
Category:
|
math |
. |
MSC:
|
53C10 |
idZBL:
|
Zbl 0456.53021 |
idMR:
|
MR609943 |
. |
Date available:
|
2008-06-05T21:07:26Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106060 |
. |
Reference:
|
[1] J. VANŽURA: Simultaneous integrability of an almost tangent structure and a distribution.preprint. MR 0895009 |
Reference:
|
[2] J. LEHMANN, LEJEUNE: Intégrabilité des $G$-structures définies par une $1$-forme $0$-déformable a valeurs dans le fibre tangent.Ann. Inst. Fourier, Grenoble 16, 2 (1966), 329-387. Zbl 0145.42103, MR 0212720 |
Reference:
|
[3] Ch.-Sh. HOUH: The integrability of a structure on a differentiable manifold.Tôhoku Math. J. 1965, 17, 72-75. Zbl 0125.39605, MR 0187172 |
Reference:
|
[4] Y. HATAKEYAMA: On the integrability of a structure defined by two semisimple $0$-deformable vector $1$-forms which commute with each other.Tôhoku Math. J. 1965, 17, No. 2, 171-177. MR 0184164 |
Reference:
|
[5] Ch. HSU C.-S. HOUH: Note on the integrability conditions of $(\varphi, \psi)$ structures.Tôhoku Math. J. 1966, 18, No. 4, 368-377. MR 0216418 |
Reference:
|
[6] C.-S. HOUH: Hung-Ching Chow Sixty-Fifth Anniversary Volume.Math. Research Center Nat. Taiwan Univ., dec. 1967. MR 0224408 |
Reference:
|
[7] Sh. HASHIMOTO: On the differentiable manifold admitting tensor fields $(F,G)$ of type $(1,1)$ satisfying $F^3 + F = 0, G^3 + G = 0, FG = - GF, F^2 = G^2$.Tensor 1964, 15, No. 3, 269-274. MR 0169184 |
Reference:
|
[8] V. KUBÁT: Simultaneous integrability of two $J$-related almost tangent structures.Comment. Math. Univ. Carolinae 20 (1979), 461-473. MR 0550448 |
Reference:
|
[9] J. BUREŠ J. VANŽURA: A Nijennuis-type tensor on the quotient of a distribution.Comment. Math. Univ. Carolinae 21 (1980), 201-208. MR 0580677 |
Reference:
|
[10] J. BUREŠ J. VANŽURA: Simultaneous integrability of analmost complex and an almost tangent structure.Czech. Math. Journal (in print). |
. |