Previous |  Up |  Next

Article

Title: Fixed point theorems for multivalued mappings (English)
Author: Le Van Hot
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 1
Year: 1982
Pages: 137-145
.
Category: math
.
MSC: 47H10
MSC: 47H15
MSC: 47J05
MSC: 54C60
MSC: 54H25
idZBL: Zbl 0492.47035
idMR: MR653357
.
Date available: 2008-06-05T21:10:57Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106138
.
Reference: [1] H. BRÉZIS F. BROWDER: A general ordering principle in nonlinear functional analysis.Advances in Math. 21 (1976), 355-364. MR 0425688
Reference: [2] J. CARISTI: Fixed point theorems for mappings satisfying inwardness condition.Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329
Reference: [3] I. EKELAND: Nonconvex minimization problems.Bull. Amer. Math. Soc. (New Series) 1 (1979), 443-474. Zbl 0441.49011, MR 0526967
Reference: [4] W. A. KIRK: A fixed point theorem for mappings which do not increase distance.Amer. Math. Monthly 72 (1965), 1004-1005. MR 0189009
Reference: [5] E. LAMI-DOZO: Multivalued nonexpansive mappings and Opial's condition.Proc. Amer. Math. Soc. 38 (1973), 286-292. Zbl 0268.47060, MR 0310718
Reference: [6] M. MASCHLER B. PELEG: Stable sets and stable points of multivalued dynamic systems.SIAM J. Control 14 (1976), 985-995. MR 0436101
Reference: [7] S. B. NADLER, Jr.: Multivalued contraction mappings.Pacific J. Math. 30 (1969), 475-480. MR 0254828
Reference: [8] J. P. PENOT: A short constructive proof of Caristi'a fixed point theorem.preprint.
Reference: [9] H. H. SCHAEFER: Topological vector spaces.Springer-Verlag, Berlin, 1971. Zbl 0217.16002, MR 0342978
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-1_11.pdf 529.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo