Previous |  Up |  Next

Article

Title: On the equation $x' = f(t, x)$ in Banach spaces (English)
Author: Banaś, Józef
Author: Hajnosz, Andrzej
Author: Wedrychowicz, Stanisław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 23
Issue: 2
Year: 1982
Pages: 233-247
.
Category: math
.
MSC: 34G20
MSC: 47H09
idZBL: Zbl 0502.34050
idMR: MR664970
.
Date available: 2008-06-05T21:11:22Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106148
.
Reference: [1] A. AMBROSETTI: Un teorema di esistenza per le equazioni differenziali negli spazi di Banach.Rend. Sem. Mat. Univ. Padova 39 (1967), 354-360. Zbl 0174.46001, MR 0222426
Reference: [2] J. BANAŚ: On measures of noncompactness in Banach spaces.Comment. Math. Univ. Carolinae 21 (1980), 131-143. MR 0566245
Reference: [3] J. BANAŚ K. GOEBEL: Measures of noncompactness in Banach spaces.Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. 60 (1980), New York and Basel. MR 0591679
Reference: [4] A. CELLINA: On the local existence of solutions of ordinary differential equations.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 293-296. Zbl 0255.34053, MR 0315237
Reference: [5] J. DANEŠ: On densifying and related mappings and their applications in nonlinear functional analysis.Theory of Nonlinear Operators, Akademie-Verlag, Berlin 1974, 15-56. MR 0361946
Reference: [6] G. DARBO: Punti uniti in transformazioni a condominino non compatto.Rend. Sem. Math. Univ. Padova 24 (1955), 84-92. MR 0070164
Reference: [7] K. DEIMLING: Ordinary differential equations in Banach spaces.Lecture Notes in Mathematics 596, Springer Verlag 1977. Zbl 0361.34050, MR 0463601
Reference: [8] K. GOEBEL W. RZYMOWSKT: An existence theorem for the equation $x = f(t,x)$ in Banach space.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 18 (1970), 367-370. MR 0269957
Reference: [9] K. KURATOWSKI: Sur les espaces complets.Fund. Math. 15 (1930), 301-309.
Reference: [10] T. ROGER: On Nagumo's condition.Canad. Math. Bull. 15 (1972), 609-611.
Reference: [11] B. RZEPECKI: Remarks on Schauder's Fixed point principle and its applications.Bull. Acad. Polon. Sci., Sér. Sci. Math. 27 (1979), 473-480. Zbl 0435.47057, MR 0560183
Reference: [12] B. N. SADOVSKI: Limit compact and condensing operators.Russian Math. Surveys 27 (1972), 86-144. MR 0428132
Reference: [13] S. SZUFLA: Some remarks on ordinary differential equations in Banach spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 16 (1968), 795-800. Zbl 0177.18902, MR 0239238
Reference: [14] S. SZUFLA: Measure of noncompactness and ordinary differential equations in Banach spaces.ibidem, 19 (1971), 831-835. MR 0303043
Reference: [15] S. SZUFLA: On the existence of solutions of ordinary differential equations in Banach spaces.Boll. Un. Mat. Ital. 5, 15-A (1978), 535-544. Zbl 0402.34002, MR 0521098
.

Files

Files Size Format View
CommentatMathUnivCarol_023-1982-2_2.pdf 903.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo