[1] H. FUJITA N.  SAUER: 
On existence of weak solutions of  the Navier-Stokes equations in regions with moving boundary. J. Fac. Sci. Univ. Tokyo Sect.  I A 17 (1970), 403-420. 
MR 0298258[2] A. INOUE M. WAKIMOTO: 
On existence of solutions of the Navier-Stokes equations in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect.  I A 24 (1977), 303-319. 
MR 0481649[3] O. A. LADYZENSKAJA V. A.  SOLONNIKOV N. N. URAL'CEVA: 
Linear and quasilinear equations of parabolic type. vol. 23 Translation of Mathematical Monographs. 
MR 0241822[4] H. MORIMOTO: 
On existence of periodic weak solutions of the Navier-Stokes equations in regions with periddically moving boundaries. J. Fac. Sci. Univ. Tokyo Sect. I A 18 (1971), 499-524. 
MR 0385354[5] T. MYAKAWA Y. TERAMOTO: 
Existence and periodicity of weak solutions of the Navier-Stokes equations in a time dependent domain. Hiroshima Math. J. 12 (1982), 513-528. 
MR 0676555[6] J. NEČAS: 
Les méthodes directes en théorie des équations elliptiques. Editions de l'Académie Tchécoslovaque des Sciences, Pi-ague 1967. 
MR 0227584[7] L. NIRENBERG: 
On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, ser. III, XIII (1959), 115-162. 
MR 0109940 | 
Zbl 0088.07601[8] M. OTANI Y. YAMADA: 
On the Navier-Stokes equations in a non-cylindrical domains:  An approach by subdifferential operator theory. J. Pac. Sci. Univ. Tokyo Sect. I A 25 (1978), 185-204. 
MR 0509584[9] R. SALVI: On existence of weak solutions of a non linear mixed problem for Navier-Stokes equations in a time dependent domain. to be published.
[10] J.  SIMON: 
Ecoulement d'un fluide non-homogène avec densité initiale s'annullant. C.R. Acad. Sci. 287 (1978), 1009-1012. 
MR 0519229