Previous |  Up |  Next

Article

Title: A fixed point result of Seghal-Smithson type (English)
Author: Turinici, Mihai
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 2
Year: 1985
Pages: 221-232
.
Category: math
.
MSC: 54C60
MSC: 54H25
idZBL: Zbl 0586.54050
idMR: MR803918
.
Date available: 2008-06-05T21:20:52Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106361
.
Reference: [1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations.Pacific J. Math. 62 (1976), 1-18. Zbl 0352.47027, MR 0473939
Reference: [2] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis.Adv. in Math. 21 (1976), 355-364. MR 0425688
Reference: [3] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifold.J. Funct. Anal. (1971), 250-274. MR 0288638
Reference: [4] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions.Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl 0305.47029, MR 0394329
Reference: [5] S. A. HUSAIN V. M. SEHGAL: A remark on a fixed point theorem of Caristi.Math. Japonica 25 (1980), 27-30. MR 0571258
Reference: [6] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces.Bull. Acad. Pol. Sol. (Ser. Sci. Math.) 23 (1975), 891-894. MR 0385654
Reference: [7] J.-P. PENOT: A characterisation of tangential regularity.Nonlinear Analysis TMA 5 (1981), 625-643. MR 0618216
Reference: [8] V. M. SEHGAL R. E. SMITHSON: A fixed point theorem for weak directional contraction multifunctions.Math. Japonica 25 (1980), 345-348. MR 0586530
Reference: [9] M. TURINICI: Mapping theorems via variable drops in Banach spaces.Rend. Ist. Lombardo Sci. Lett. (A) 114 (1980), 164-168. Zbl 0504.46008, MR 0698680
Reference: [10] M. TURINICI: A generalization of Brézis-Browder's ordering principle.An. Sti. Univ. "Al. I. Cuza" Iasi (S.I-a) 28 (1982), 11-16. Zbl 0504.54033, MR 0667714
Reference: [11] M. TURINICI: Mapping theorems via contractor directions in metrizable locally convex spaces.Bull. Acad. Pol. Sci. (Ser. Sci. Math.) 30 (1982), 161-166. Zbl 0497.47038, MR 0673440
Reference: [12] M. TURINICI: A maximality principle on ordered metric spaoes.Rev. Colomb. Mat. 16 (1982), 115-124. MR 0685247
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-2_2.pdf 798.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo