Title:
|
A fixed point result of Seghal-Smithson type (English) |
Author:
|
Turinici, Mihai |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
26 |
Issue:
|
2 |
Year:
|
1985 |
Pages:
|
221-232 |
. |
Category:
|
math |
. |
MSC:
|
54C60 |
MSC:
|
54H25 |
idZBL:
|
Zbl 0586.54050 |
idMR:
|
MR803918 |
. |
Date available:
|
2008-06-05T21:20:52Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106361 |
. |
Reference:
|
[1] M. ALTMAN: Contractor directions, directional contractors and directional contractions for solving equations.Pacific J. Math. 62 (1976), 1-18. Zbl 0352.47027, MR 0473939 |
Reference:
|
[2] H. BRÉZIS F. E. BROWDER: A general principle on ordered sets in nonlinear functional analysis.Adv. in Math. 21 (1976), 355-364. MR 0425688 |
Reference:
|
[3] F. E. BROWDER: Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifold.J. Funct. Anal. (1971), 250-274. MR 0288638 |
Reference:
|
[4] J. CARISTI: Fixed point theorems for mappings satisfying inwardness conditions.Trans. Amer. Math. Soc. 215 (1976), 241-251. Zbl 0305.47029, MR 0394329 |
Reference:
|
[5] S. A. HUSAIN V. M. SEHGAL: A remark on a fixed point theorem of Caristi.Math. Japonica 25 (1980), 27-30. MR 0571258 |
Reference:
|
[6] W. A. KIRK J. CARISTI: Mapping theorems in metric and Banach spaces.Bull. Acad. Pol. Sol. (Ser. Sci. Math.) 23 (1975), 891-894. MR 0385654 |
Reference:
|
[7] J.-P. PENOT: A characterisation of tangential regularity.Nonlinear Analysis TMA 5 (1981), 625-643. MR 0618216 |
Reference:
|
[8] V. M. SEHGAL R. E. SMITHSON: A fixed point theorem for weak directional contraction multifunctions.Math. Japonica 25 (1980), 345-348. MR 0586530 |
Reference:
|
[9] M. TURINICI: Mapping theorems via variable drops in Banach spaces.Rend. Ist. Lombardo Sci. Lett. (A) 114 (1980), 164-168. Zbl 0504.46008, MR 0698680 |
Reference:
|
[10] M. TURINICI: A generalization of Brézis-Browder's ordering principle.An. Sti. Univ. "Al. I. Cuza" Iasi (S.I-a) 28 (1982), 11-16. Zbl 0504.54033, MR 0667714 |
Reference:
|
[11] M. TURINICI: Mapping theorems via contractor directions in metrizable locally convex spaces.Bull. Acad. Pol. Sci. (Ser. Sci. Math.) 30 (1982), 161-166. Zbl 0497.47038, MR 0673440 |
Reference:
|
[12] M. TURINICI: A maximality principle on ordered metric spaoes.Rev. Colomb. Mat. 16 (1982), 115-124. MR 0685247 |
. |