Previous |  Up |  Next

Article

Title: Polyadic spaces of arbitrary compactness numbers (English)
Author: Bell, Murray G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 2
Year: 1985
Pages: 353-361
.
Category: math
.
MSC: 03E05
MSC: 04A20
MSC: 54D30
idZBL: Zbl 0587.54039
idMR: MR803933
.
Date available: 2008-06-05T21:21:35Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106376
.
Reference: [1] D. Amir J. Lindenstrauss: The structure of weakly compact subsets in Banach spaces.Ann. of Math. 88, 1968, 35-46. MR 0228983
Reference: [2] M. G. Bell: Two boolean algebras with extreme cellular and compactness properties.Can. J. of Math., Vol. XXXV, No. 5, 1983, 824-838. Zbl 0519.06012, MR 0735899
Reference: [3] M. G. Bell: Supercompactness of compactifications and hyperspaces.Trans. A.M.S., Vol. 281, No. 2, 1984, 717-724. Zbl 0523.54015, MR 0722770
Reference: [4] M. G. Bell J. Ginsburg: Compact spaces and spaces of maximal complete subgraphs.Trans. A.M.S., Vol. 283, No. 1, 1984, 329-338. MR 0735426
Reference: [5] M. G. Bell J. van Mill: The compactness number of a compact topological space I.Fund. Math. CVI, 1980, 163-173. MR 0584490
Reference: [6] J. de Groot: Supercompactness and superextensions, in Contributions to extension theory of topological structure.Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. MR 0244955
Reference: [7] C. F. Mill J. van Mill: A nonsupercompact continuous image of a supercompact space.Houston J. Math. 5, 1979, 241-247. MR 0546758
Reference: [8] S. Mrowka: Mazur theorem and $m$-adic spaces.Bull. Acad. Polonaise Sci. XVIII No. 6, 1970, 299-305. Zbl 0194.54302, MR 0264613
Reference: [9] M. Hušek: Special Classes of Compact Spaces.Lecture Notes in Math. 719 Springer Verlag 1979, 167-175. MR 0544642
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-2_17.pdf 520.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo