Previous |  Up |  Next

Article

Title: On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball (English)
Author: Oswald, P.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 26
Issue: 3
Year: 1985
Pages: 565-577
.
Category: math
.
MSC: 35A05
MSC: 35A30
MSC: 35B45
MSC: 35J65
MSC: 35P30
idZBL: Zbl 0612.35055
idMR: MR817827
.
Date available: 2008-06-05T21:22:21Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106393
.
Reference: [1] D. G. de FIGUEIREDO P.-L. LIONS R. D. NUSSBAUM: A priori estimates and existence of positive solutions of semilinear elliptic equations.J. Math, pures et appl. 61 (1982), 41-63. MR 0664341
Reference: [2] R. E. L. TURNER: A priori bounds for positive solutions ot nonlinear elliptic equations in two variables.Duke Math. J. 41 (1974), 759-774. MR 0364859
Reference: [3] R. NUSSBAUM: Positive solutions of some nonlinear elliptic boundary value problems.J. Math. Anal. Appl. 51 (1975), 461-482. MR 0382850
Reference: [4] H. BREZIS R. E. L. TURNER: On a class of superlinear elliptic problems.Comm. in P.D.E. 2 (1977), 601-614. MR 0509489
Reference: [5] S. I. POHOZAEV: Eigenfunctions of the equation $\Delta u + \lambda \cdot f(u) = 0$.Soviet Math. Dokl. 6 (1965), 1408-1411. MR 0192184
Reference: [6] B. GIDAS W.-M. NI L. NIRENBERG: Symmetric and related properties via the maximum principle.Comm. Math. Phys. 68 (1979), 209-243. MR 0544879
Reference: [7] M. PROTTER H. WEINBERGER: Maximum principles in differential equations.Prentice Hall, Englewood Cliffs, 1967. MR 0219861
.

Files

Files Size Format View
CommentatMathUnivCarol_026-1985-3_10.pdf 897.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo