Previous |  Up |  Next

Article

Title: Alternating cycles and realizations of a degree sequence (English)
Author: Majcher, Zofia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 3
Year: 1987
Pages: 467-480
.
Category: math
.
MSC: 05C38
MSC: 05C99
idZBL: Zbl 0627.05042
idMR: MR912577
.
Date available: 2008-06-05T21:29:59Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106561
.
Reference: [1] D. BILLINGTON: Connected subgraphs of the graph of multigraphic realizations of a degree sequence.Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag, L.N.M. 884, 1981), 125-135. MR 0641242
Reference: [2] R. B. EGGLETON: Graphic sequences and graphic polynomials: a report.in: Infinite and Finite Sets, Vol. 1, Colloq. Math. Soc. J. Bolyai 10 (North-Holland, Amsterdam, 1975), 385-392. Zbl 0313.05123, MR 0384612
Reference: [3] R. B. EGGLETON D. A. HOLTON: The graph of type $(0,\infty, \infty)$ realizations of a graphic sequence.Combinatorial Math. VI, Proc. 6th Australian Conf. on Combinatorial Math., Armidale, 1978 (Springer-Verlag, L.N.M. 748, 1979), 41-54. MR 0558032
Reference: [4] R. B. EGGLETON D. A. HOLTON: Simple and multigraphic realizations of degree sequences.Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag, L.N.M. 884, 1981), 155-172. MR 0641245
Reference: [5] Z. MAJCHER: .Graphic matrices (in print).
Reference: [6] R. TAYLOR: Constrained switchings in graphs.Combinatorial Math. VIII, Proc. 8th Australian Conf. on Combinatorial Math., Geelong, 1980 (Springer-Verlag, L.N.M. 884, 1981), 314-336. MR 0641256
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-3_10.pdf 1.021Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo