Title:
|
Uniformly normal structure and fixed points of uniformly Lipschitzian mappings (English) |
Author:
|
Górnicki, Jarosław |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
28 |
Issue:
|
3 |
Year:
|
1987 |
Pages:
|
481-489 |
. |
Category:
|
math |
. |
MSC:
|
46B20 |
MSC:
|
47H09 |
MSC:
|
47H10 |
idZBL:
|
Zbl 0649.47045 |
idMR:
|
MR912578 |
. |
Date available:
|
2008-06-05T21:30:02Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106562 |
. |
Reference:
|
[1] J. B. BAILLON: Quelques aspects de la théorie des pointes fixes dans les espaces de Banach I.Séminaire d'Analyse Fonctionnelle, VII, Ecole Polytechnique, Palaiseau, France, 1978-79. |
Reference:
|
[2] J. B. BAILLON R. SCHÖNEBERG: Asymptotic normal structure and fixed points of nonexpansive maps.Proc. Amer. Math. Soc. 81 (1981), 257-264. MR 0593469 |
Reference:
|
[3] W. L. BYNUM: Normal structure coefficients for Banach spaces.Pacific J. Math. 86 (1980), 427-436. Zbl 0442.46018, MR 0590555 |
Reference:
|
[4] E. CASINI E. MALUTA: Fixed points of uniformly Liptschitzian mappings in spaces with uniformly normal structure.Nonlinear Analysis TMA, 9, no 1 (1985), 103-108. MR 0776365 |
Reference:
|
[5] D. DOWNING B. TURETT: Some properties of the characteristic of convexity relating to fixed point theory.Pacific J. Math. 104 (1983), 343-350. MR 0684294 |
Reference:
|
[6] A. A. GILLESPIE B. B. WILLIAMS: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure.Appl. Anal. 9 (1979). 121-124. MR 0539537 |
Reference:
|
[7] K. GOEBEL W. A. KIRK: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant.Studia Math. 47 (1973), 135-140. MR 0336468 |
Reference:
|
[8] K. GOEBEL W. A. KIRK R. L. THELE: Unfiromly Lipschitzian families of transformations in Banach spaces.Can. J. Math. 26 (1974), 1245-1256. MR 0358453 |
Reference:
|
[9] J. GÓRNICKI M. KRÜPPEL: A Banach measure and fixed points of uniformly Lipschitzian mappings in Banach spaces.Bull. Polish Acad. Sci. (to appear). MR 0998208 |
Reference:
|
[10] W. A. KIRK: Nonexpansive mappings and normal structures in Banach spaces.Proc. of Research Workshop on Banach space theory, The University of Iowa, 1981, 113-127. MR 0724109 |
Reference:
|
[11] M. KRÜPPEL J. GÓRNICKI: Ein masstheoretischer Fixpunktsatz für nichtlineare Operatoren im Hilbert Raum.Wiss. Z. Pädagog. Hochsch. "Liselotte Hennam" Güstrow, Math, Nat. Fak., Heft 1/1086, 59-66. MR 0895133 |
Reference:
|
[12] E. A. LIFSCHITZ: Fixed point theorem for operators in strongly convex spaces.Voronež Gos. Univ., Trudy Mat. Fak. 16 (1975), 23-2B (in Russian). |
Reference:
|
[13] T. C. LIM: Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces.Nonlinear Analysis TMA 7 (1983), 555-563. MR 0698365 |
Reference:
|
[14] E. MALUTA: Uniformly normal structure and related coefficients.Pacific J. Math. 111, no 2 (1984), 357-369. Zbl 0495.46012, MR 0734861 |
Reference:
|
[15] S. SWAMINATHAN: Normal structure in Banach spaces and its generalizations.Contemporary Math. 18 (1983), 201-215. MR 0728601 |
. |