Previous |  Up |  Next

Article

Title: Uniformly normal structure and fixed points of uniformly Lipschitzian mappings (English)
Author: Górnicki, Jarosław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 3
Year: 1987
Pages: 481-489
.
Category: math
.
MSC: 46B20
MSC: 47H09
MSC: 47H10
idZBL: Zbl 0649.47045
idMR: MR912578
.
Date available: 2008-06-05T21:30:02Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106562
.
Reference: [1] J. B. BAILLON: Quelques aspects de la théorie des pointes fixes dans les espaces de Banach I.Séminaire d'Analyse Fonctionnelle, VII, Ecole Polytechnique, Palaiseau, France, 1978-79.
Reference: [2] J. B. BAILLON R. SCHÖNEBERG: Asymptotic normal structure and fixed points of nonexpansive maps.Proc. Amer. Math. Soc. 81 (1981), 257-264. MR 0593469
Reference: [3] W. L. BYNUM: Normal structure coefficients for Banach spaces.Pacific J. Math. 86 (1980), 427-436. Zbl 0442.46018, MR 0590555
Reference: [4] E. CASINI E. MALUTA: Fixed points of uniformly Liptschitzian mappings in spaces with uniformly normal structure.Nonlinear Analysis TMA, 9, no 1 (1985), 103-108. MR 0776365
Reference: [5] D. DOWNING B. TURETT: Some properties of the characteristic of convexity relating to fixed point theory.Pacific J. Math. 104 (1983), 343-350. MR 0684294
Reference: [6] A. A. GILLESPIE B. B. WILLIAMS: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure.Appl. Anal. 9 (1979). 121-124. MR 0539537
Reference: [7] K. GOEBEL W. A. KIRK: A fixed point theorem for transformations whose iterates have uniform Lipschitz constant.Studia Math. 47 (1973), 135-140. MR 0336468
Reference: [8] K. GOEBEL W. A. KIRK R. L. THELE: Unfiromly Lipschitzian families of transformations in Banach spaces.Can. J. Math. 26 (1974), 1245-1256. MR 0358453
Reference: [9] J. GÓRNICKI M. KRÜPPEL: A Banach measure and fixed points of uniformly Lipschitzian mappings in Banach spaces.Bull. Polish Acad. Sci. (to appear). MR 0998208
Reference: [10] W. A. KIRK: Nonexpansive mappings and normal structures in Banach spaces.Proc. of Research Workshop on Banach space theory, The University of Iowa, 1981, 113-127. MR 0724109
Reference: [11] M. KRÜPPEL J. GÓRNICKI: Ein masstheoretischer Fixpunktsatz für nichtlineare Operatoren im Hilbert Raum.Wiss. Z. Pädagog. Hochsch. "Liselotte Hennam" Güstrow, Math, Nat. Fak., Heft 1/1086, 59-66. MR 0895133
Reference: [12] E. A. LIFSCHITZ: Fixed point theorem for operators in strongly convex spaces.Voronež Gos. Univ., Trudy Mat. Fak. 16 (1975), 23-2B (in Russian).
Reference: [13] T. C. LIM: Fixed point theorems for uniformly Lipschitzian mappings in $L^p$ spaces.Nonlinear Analysis TMA 7 (1983), 555-563. MR 0698365
Reference: [14] E. MALUTA: Uniformly normal structure and related coefficients.Pacific J. Math. 111, no 2 (1984), 357-369. Zbl 0495.46012, MR 0734861
Reference: [15] S. SWAMINATHAN: Normal structure in Banach spaces and its generalizations.Contemporary Math. 18 (1983), 201-215. MR 0728601
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-3_11.pdf 829.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo