[1] A. BRESSAN: 
On differential relations with lower continuous right hand side. An existence theorem. J. Diff. Equations 37 (1980), 89-97. 
MR 0583341 | 
Zbl 0418.34017[2] C. CASTAING: 
Rafle par un convexe aleatoire à variation continue à droite. Séminaire d'Analyse Convexe, Montpellier 1975, expose no 15. 
MR 0512203 | 
Zbl 0353.46032[3] C. CASTAING M. VALADIER: 
Convex Analysis and Measurable Multifunctions. Lecture Notes in Math., Vol. 580, Springer, Berlin (1977). 
MR 0467310[4] K. DEIMLING: 
Sample solutions of stochastic ordinary differential equations. Stoch. Anal. Appl. 3 (1985), 15-21. 
MR 0783042 | 
Zbl 0555.60036[5] N. DUNFORD J. SCHWARTZ: Linear Operators. Vol. I, Wiley, New York (1958).
[6] C. HIMMELBERG F. Van LECK: 
Lipschitzian generalized differential equations. Rend. Sem. Mat. Univ. Padova 48 (1972), 156-169. 
MR 0340692[7] S. ITOH: 
Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67 (1979), 261-173. 
MR 0528687 | 
Zbl 0407.60069[8] G. LADDE V. LAKSHMIKANTHAM: 
Random Differential  Inequalities. Academic Press,  New York (1980). 
MR 0618464[9] S. LOJASIEWICZ: 
The existence of solutions for lower semicontinuous orientor fields. Bull. Polish Acad. Sci. 28 (1980), 483-487. 
MR 0629022 | 
Zbl 0483.49028[10] A. NOWAK: 
Applications of random fixed point theorems in the theory of generalized random differential equations. Bull. Polish Acad. Sci. 34 (1986),  487-494. 
MR 0874895 | 
Zbl 0617.60059[11] N. S. PAPAGEORGIOU: 
Random differential  inclusions in Banach spaces. J. Diff. Equations 65 (1986),  287-303. 
MR 0865064 | 
Zbl 0615.34006[12] N. S. PAPAGEORGIOU: 
On measurable  multifunctions with applications to random generalized equations. Math. Japonica 32 (1987), 701-727. 
MR 0914749[13] N. S. PAPAGEORGIOU: On the existence of solutions of random functional-differential equations in Banach spaces. J. Math. Anal. Appl. (to appear).
[14] N. S. PAPAGEORGIOU: 
Functional-differential  inclusions in Banach spaces with nonconvex right  hand side. Funkcialaj Ekvacioj (to appear). 
MR 1006092 | 
Zbl 0698.34067[15] PHAN VAN CU0NG: 
Existence of solutions for random multivalued Volterra integral  equations. J.  Integral  Equations 7 (1984), 143-173. 
MR 0756552[16] M.-F. SAINT-BEUVE: On the extensions of von Neumann-Aumann's theorem. J. Funct. Anal. 17 (1974), 112-129.