Previous |  Up |  Next

Article

Title: Random functional-differential inclusions with nonconvex right-hand side in a Banach space (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 28
Issue: 4
Year: 1987
Pages: 649-654
.
Category: math
.
MSC: 34F05
MSC: 34G20
MSC: 34G99
MSC: 34K30
MSC: 60H25
idZBL: Zbl 0636.60066
idMR: MR928679
.
Date available: 2008-06-05T21:30:46Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106578
.
Reference: [1] A. BRESSAN: On differential relations with lower continuous right hand side. An existence theorem.J. Diff. Equations 37 (1980), 89-97. Zbl 0418.34017, MR 0583341
Reference: [2] C. CASTAING: Rafle par un convexe aleatoire à variation continue à droite.Séminaire d'Analyse Convexe, Montpellier 1975, expose no 15. Zbl 0353.46032, MR 0512203
Reference: [3] C. CASTAING M. VALADIER: Convex Analysis and Measurable Multifunctions.Lecture Notes in Math., Vol. 580, Springer, Berlin (1977). MR 0467310
Reference: [4] K. DEIMLING: Sample solutions of stochastic ordinary differential equations.Stoch. Anal. Appl. 3 (1985), 15-21. Zbl 0555.60036, MR 0783042
Reference: [5] N. DUNFORD J. SCHWARTZ: Linear Operators.Vol. I, Wiley, New York (1958).
Reference: [6] C. HIMMELBERG F. Van LECK: Lipschitzian generalized differential equations.Rend. Sem. Mat. Univ. Padova 48 (1972), 156-169. MR 0340692
Reference: [7] S. ITOH: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261-173. Zbl 0407.60069, MR 0528687
Reference: [8] G. LADDE V. LAKSHMIKANTHAM: Random Differential Inequalities.Academic Press, New York (1980). MR 0618464
Reference: [9] S. LOJASIEWICZ: The existence of solutions for lower semicontinuous orientor fields.Bull. Polish Acad. Sci. 28 (1980), 483-487. Zbl 0483.49028, MR 0629022
Reference: [10] A. NOWAK: Applications of random fixed point theorems in the theory of generalized random differential equations.Bull. Polish Acad. Sci. 34 (1986), 487-494. Zbl 0617.60059, MR 0874895
Reference: [11] N. S. PAPAGEORGIOU: Random differential inclusions in Banach spaces.J. Diff. Equations 65 (1986), 287-303. Zbl 0615.34006, MR 0865064
Reference: [12] N. S. PAPAGEORGIOU: On measurable multifunctions with applications to random generalized equations.Math. Japonica 32 (1987), 701-727. MR 0914749
Reference: [13] N. S. PAPAGEORGIOU: On the existence of solutions of random functional-differential equations in Banach spaces.J. Math. Anal. Appl. (to appear).
Reference: [14] N. S. PAPAGEORGIOU: Functional-differential inclusions in Banach spaces with nonconvex right hand side.Funkcialaj Ekvacioj (to appear). Zbl 0698.34067, MR 1006092
Reference: [15] PHAN VAN CU0NG: Existence of solutions for random multivalued Volterra integral equations.J. Integral Equations 7 (1984), 143-173. MR 0756552
Reference: [16] M.-F. SAINT-BEUVE: On the extensions of von Neumann-Aumann's theorem.J. Funct. Anal. 17 (1974), 112-129.
.

Files

Files Size Format View
CommentatMathUnivCarol_028-1987-4_7.pdf 586.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo