Previous |  Up |  Next

Article

Title: Semiprime ideals in orthomodular lattices (English)
Author: Chevalier, Georges
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 29
Issue: 2
Year: 1988
Pages: 379-386
.
Category: math
.
MSC: 06C15
idZBL: Zbl 0655.06008
idMR: MR957406
.
Date available: 2008-06-05T21:34:00Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106647
.
Reference: [1] L. Beran: Orthomodular lattices (Algebraic approach).D. Reidel Publishing Company, Dordrecht - Boston, 1985. Zbl 0558.06008, MR 0784029
Reference: [2] L. Beran: Distributivity in finitely generated orthomodular lattices.Commentationes Mathematicae Universitatis Carolinae, 28, 3, p.433-435, 1987. Zbl 0624.06008, MR 0912572
Reference: [3] T. S. Blyth M. F. Janowitz: Residuation theory.Pergamon Press, Oxford, 1972. MR 0396359
Reference: [4] G. Chevalier: Relations binaires et congruences dans un treillis orthomodulaire.C.R. Acad. Paris, t 286, serie 1, p. 785-788, 1983. Zbl 0528.06011, MR 0711831
Reference: [5] P. D. Finch: Congruence relations in orthomodular lattices.J. Austral. Math. Soc, 6, p. 46-54, 1966. MR 0197369
Reference: [6] E. L. Marsden, Jr.: The commutator and solvability in a generalized orthomodular lattice.Pac. J. Math., Vol. 33, N° 2, p. 357-361, 1970. Zbl 0234.06004, MR 0263712
Reference: [7] S. Pulmannová: Commutators in orthomodular lattices.Demonstratio Mathematica, Vol XVIII, N° 1, p. 187-208, 1985. MR 0816029
Reference: [8] Y. Rav: Prime separations and semiprime ideal in lattices under minimal set-theoretical assumptions.Prépublications de l'Université de Paris-Sud 86T11, 1986.
.

Files

Files Size Format View
CommentatMathUnivCarol_029-1988-2_21.pdf 555.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo