Title:
|
Some remarks and applications of an extension of a lemma of Ky Fan (English) |
Author:
|
Sessa, Salvatore |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
29 |
Issue:
|
3 |
Year:
|
1988 |
Pages:
|
567-575 |
. |
Category:
|
math |
. |
MSC:
|
47H10 |
MSC:
|
49A40 |
MSC:
|
49A50 |
MSC:
|
49J35 |
MSC:
|
58C30 |
idZBL:
|
Zbl 0674.47041 |
idMR:
|
MR972839 |
. |
Date available:
|
2008-06-05T21:35:11Z |
Last updated:
|
2012-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106672 |
. |
Reference:
|
[1] H. F. BOHNENBLUST S. KARLIN: On a theorem of Ville in: "Contributions to the Theory of Games".(H. W. KUHN and A. W TUCKER Eds.), Vol. I, Ann. of Math. Studies 24, Princeton Univ. Press (1950), 155-160. MR 0041415 |
Reference:
|
[2] F. E. BROWDER: The fixed point theory of multivalued mappings in topological vector spaces.Math. Ann. 177 (1968), 283-301. MR 0229101 |
Reference:
|
[3] F. E. BROWDER: On a sharpened form of the Schauder fixed point theorem.Proc. Nat. Acad. Sci. USA 74 (1977), 4749-4751. Zbl 0375.47028, MR 0463982 |
Reference:
|
[4] F. E. BROWDER: Coincidence theorems, minimax theorems and variational inequalities.Contemporary Math., Vol. 26, Amer. Math. Soc, Providence, R.I., (1984) 67-80. Zbl 0542.47046, MR 0737389 |
Reference:
|
[5] K. FAN: Fixed point and minimax theorems in locally convex topological linear spaces.Proc. Nat. Acad. Sci. USA 38 (1952), 121-126. Zbl 0047.35103, MR 0047317 |
Reference:
|
[6] K. FAN: A generalization of Tychonoff's fixed point theorem.Math. Ann. 142 (1961), 305-310. Zbl 0093.36701, MR 0131268 |
Reference:
|
[7] K. FAN: A minimax inequality and applications, in: "Inequalities".(O. SHISHA Ed.), Vol. III, Academic Press, New York, London (1972), 103-113. MR 0341029 |
Reference:
|
[8] K. FAN: Some properties of convex sets related to fixed point theorems.Math. Ann. 266 (1984), 519-537. Zbl 0515.47029, MR 0735533 |
Reference:
|
[9] I. L. GLICKSBERG: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points.Proc. Amer. Math. Soc. 3 (1952), 170-174. Zbl 0163.38301, MR 0046638 |
Reference:
|
[10] C. W. HA: Minimax and fixed point theorems.Math. Ann. 248 (1980), 73-77. Zbl 0413.47042, MR 0569411 |
Reference:
|
[11] O. HADŽIĆ: Fixed point theory in topological vector spaces.Univ. of Novi Sad, Inst, of Math., Novi Sad, Yugoslavia (1984). MR 0789224 |
Reference:
|
[12] B. R. HALPERN G. M. BERGMAN: A fixed point theorem for inward and outward maps.Trans. Amer. Math. Soc. 130 (1968), 353-358. MR 0221345 |
Reference:
|
[13] C. J. HIMMELBERG: Fixed points for compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205-207. MR 0303368 |
Reference:
|
[14] B. KNASTER C. KURATOWSKI S. MAZURKIEWICZ: Ein Beweis des Fixpunktsatzes für n-dimensional Simplexe.Fund. Math. 14 (1929), 132-137. |
Reference:
|
[15] H. KOMIYA: Coincidence theorem and saddle point theorem.Proc. Amer. Math. Soc. 96 (1986), 599-602. Zbl 0657.47055, MR 0826487 |
Reference:
|
[16] T. C. LIN: Convex sets, fixed points, variational and minimax inequalities.Bull. Austral. Math. Soc. 34 (1986), 107-117. Zbl 0597.47038, MR 0847978 |
Reference:
|
[17] G. MEHTA: Fixed points, equilibria and maximal elements in linear topological spaces.Comm. Math. Univ. Carolinae 28 (2) (1987), 377-385. Zbl 0632.47041, MR 0904761 |
Reference:
|
[18] S. PARK: Fixed point theorems on compact convex sets in topological vector spaces.MSRI Report Series, N. 25 (1986). Abstract 87T-47-211 of Amer. Math. Soc, Vol. 8, no. 6, p. 445. |
Reference:
|
[19] J. B. PROLLA: Fixed point theorems for set-valued mappings and existence of best approximants.Numer.- Funct. Anal. Optimiz. 5 (4) (1982-83), 449-455. MR 0703107 |
Reference:
|
[20] E. TARAFDAR: On nonlinear variational inequalities.Proc. Amer. Math. Soc. 67 (1977), 95-98. Zbl 0369.47029, MR 0467408 |
Reference:
|
[21] E. TARAFDAR: Variational problems via a fixed point theorem.Indian J. Math. 28 (1986), 229-240. Zbl 0641.49005, MR 0900728 |
Reference:
|
[22] E. TARAFDAR: A fixed point theorem equivalent to the Fan-Knaster-Kuratowski-Mazurkiewicz theorem.J. Math. Anal. Appl. 128 (1987), 475-479. Zbl 0644.47050, MR 0917380 |
. |