Previous |  Up |  Next

Article

Title: A few topological problems (English)
Author: Rudin, Mary Ellen
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 29
Issue: 4
Year: 1988
Pages: 743-746
.
Category: math
.
MSC: 03E75
MSC: 54-02
MSC: 54A35
MSC: 54A99
MSC: 54B10
MSC: 54D15
MSC: 54D20
MSC: 54E20
MSC: 57P99
idZBL: Zbl 0688.54003
idMR: MR982794
.
Date available: 2008-06-05T21:36:06Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106692
.
Reference: [1] C. H. DOWKER: A problem in set theory.J. London Math. Soc. 27 (1952), 371-374. Zbl 0046.05203, MR 0047741
Reference: [2] M. E. RUDIN: Two questions of Dowker.Proceedings Amer. Math. Soc. Vol. 91 (1984), 155-158. MR 0735583
Reference: [3] S. TODORČEVIĆ: Forcing positive partition relations.Trans. Amer. Math. Soc. 280 (1983), 703-720. MR 0716846
Reference: [4] V. PONOMAREV L. SAPIRO: Absolutes of topological spaces and their continuous maps.Uspehi Math. 31 (1976), 121-136 (Sov. Math. Surv. 21 (1976), 138-154). MR 0451216
Reference: [5] C. J. KNIGHT: Box topologies.Quart. J. Math., Oxford 15 (1964), 41-54. Zbl 0122.17404, MR 0160184
Reference: [6] L. B. LAWRENCE: The box product of countably many copies of the rationals is consistently paracompact.(to appear). Zbl 0704.54013, MR 0961613
Reference: [7] M. E. RUDIN: The box product of countably many compact metric spaces.Gen. Top. Appl. 2 (1972), 293-298. Zbl 0243.54015, MR 0324619
Reference: [8] K. KUNEN: Paracompactness of box products of compact spaces.Trans. Amer. Math. Soc. 240 (1978), 307-316. Zbl 0386.54003, MR 0514975
Reference: [9] E. van DOUWEN: The box products of countably many metrizable spaces need not be normal.Fund. Math. 88 (1975), 127-132. MR 0385781
Reference: [10] M. E. RUDIN: A normal screenable nonparacompact space.Top. Appl. 15 (1983), 313-322. MR 0694550
Reference: [11] M. E. RUDIN: Two nonmetrizable manifolds.(to appear). Zbl 0708.54012, MR 1058794
Reference: [12] M. E. RUDIN: Countable point separating open covers of manifolds.Houston J. (to appear). MR 1022067
Reference: [13] Z. BALOGH: Locally nice spaces under Martin's Axiom.Comment. Math. Univ. Carolinae 24 (1983), 63-87. Zbl 0529.54006, MR 0703926
Reference: [14] M. E. RUDIN: A normal space X for which $X*I$ is not normal.Fund. Math. LXXIII (1971), 179-186. MR 0293583
Reference: [15] K. CHIBA T. PRZYMUSINSKI M. RUDIN: Normality of products and Morita's conjectures.Top. Appl. 22 (1986), 19-32. MR 0831178
Reference: [16] A. BEŠLAGlČ M. RUDIN: Set theoretic constructions of non-shrinking open covers.Top. Appl. 20 (1985), 167-177. MR 0800847
Reference: [17] A. BEŠLAGlČ: Normality in products.Top. Appl. 22 (1986), 71-82.
Reference: [18] A. V. ARHANGEL'SKII: A survey of $C_p$-theory.Q&A in Gen. Top. 5 (1978), 1-109. MR 0909494
Reference: [19] Jiang SH0ULI: Every strict p-space is $\theta $-refinable.Top. Proc. 12 (1987) (to appear).
Reference: [20] K. Kunen J. E. Vaughan: Handbook of Set Theoretic Topology.editors, Elsevier Sci. Pub. BV (1984). MR 0776619
Reference: [21] W. FLEISSNER: Normal Moore spaces in the constructive universe.Proc. Amer. Math. Soc. 46 (1974), 294-298. MR 0362240
Reference: [22] C. NAVY: Paracompactness in para-Lindelöf spaces.Thesis, University of Wisconsin, Madison, Wis. (1981).
.

Files

Files Size Format View
CommentatMathUnivCarol_029-1988-4_15.pdf 381.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo