Previous |  Up |  Next

Article

Title: Orlicz lattices with modular topology. I. (English)
Author: Nowak, Marian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 2
Year: 1989
Pages: 261-270
.
Category: math
.
MSC: 46A40
MSC: 46E30
idZBL: Zbl 0679.46021
idMR: MR1014127
.
Date available: 2008-06-05T21:38:30Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106744
.
Related article: http://dml.cz/handle/10338.dmlcz/106745
.
Reference: [1] Aliprantis C. D., Burkinshaw O.: Locally solid Riesz spaces.Academic Press, New York, 1978. Zbl 0402.46005, MR 0493242
Reference: [2] Bourbaki N.: Espaces vestoriels topologiques.Ermann et Cie, Paris, 1955.
Reference: [3] Cristescu R.: Topological vector spaces.Nordhoff Inter. Publ. Leyden, 1977. Zbl 0345.46001, MR 0454552
Reference: [4] Kantorovich L. V., Vulikh B. Z., Pinsker A. G.: Functional analysis in partially ordered spaces.Gostehizdat, Moscow, 1950. Zbl 0037.07201
Reference: [5] Kantorovich L. V., Akilov G. P.: Functional analysis.Nauka, Moscow, 1984. Zbl 0555.46001, MR 0788496
Reference: [6] Leśniewicz R.: Generalized modular spaces. I..Comment. Math. 18 (1975), 223-242. MR 0394092
Reference: [7] Leśniewicz R.: Generalized modular spaces. II..ibidem 18 (1975), 243-271.
Reference: [8] Leśniewicz R., Orlicz W.: A note on modular spaces. XIV..Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 22 (1974), 915-923. MR 0361716
Reference: [9] Luxemburg W. A.: Banach function spaces.Delft, 1955. Zbl 0068.09204, MR 0072440
Reference: [10] Luxemburg W. A., Zaanen A. C.: Riesz spaces. I..North-Holland Publ. Comp. Amsterdam, London, 1971. MR 0511676
Reference: [11] Matuszewska W.: On generalized Orlicz spaces.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 8 (1960), 349-353. Zbl 0101.08903, MR 0126157
Reference: [12] Musielak J., Orlicz W.: On modular spaces.Studia Math. 18 (1959), 49-65. Zbl 0099.09202, MR 0101487
Reference: [13] Musielak J.: Orlicz spaces and modular spaces.Springer, Berlin, Heidelberg, New York, Tokyo, 1983. Zbl 0557.46020, MR 0724434
Reference: [14] Nowak M.: On the finest of all linear topologies on Orlicz spaces for which $\varphi $-modular convergence implies convergence in these topologies.Bull. Poion. Ac. Math. 32 (1984), 439-445. MR 0782760
Reference: [15] Nowak M.: On modular topology on Orlicz spaces.ibidem 36 (1988), 41-50. MR 1760099
Reference: [16] Nowak M.: On the order structure of Orlicz lattices.ibidem 36 (1988). Zbl 0767.46005, MR 1101668
Reference: [17] Nowak M.: Orlicz lattices with modular topology. II..(to appear). Zbl 0679.46022
Reference: [18] Orlicz W.: A note on modular spaces. VII..Bul. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 12 (1964), 305-309. Zbl 0135.16202, MR 0169032
Reference: [19] Peressini A.: Order topological vector spaces.Harper and Row, New York, London, 1967. MR 0227731
Reference: [20] Shapiro J. H.: Extension of linear functionals on F-spaces with bases.Duke Math. J. 37 (1970), 639-645. Zbl 0205.41002, MR 0270111
Reference: [21] Wiweger A.: Linear spaces with mixed topologies.Studia Math. 20 (1961), 47-68. MR 0133664
Reference: [22] Wnuk W.: Representations of Orlicz lattices.Dissert.Math. 235 (1984). Zbl 0566.46018, MR 0820077
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-2_8.pdf 976.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo