Previous |  Up |  Next

Article

Title: Orlicz lattices with modular topology. II. (English)
Author: Nowak, Marian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 2
Year: 1989
Pages: 271-279
.
Category: math
.
MSC: 46A22
MSC: 46A40
MSC: 46E30
idZBL: Zbl 0679.46022
idMR: MR1014127
.
Date available: 2008-06-05T21:38:32Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106745
.
Related article: http://dml.cz/handle/10338.dmlcz/106744
.
Reference: [1] Aliprantis C. D., Burkinshaw O.: Locally solid Riesz spaces.Academic Press, New York, 1978. Zbl 0402.46005, MR 0493242
Reference: [2] Bourbaki N.: Espaces vectoriels topologiques.Ermanne et Cie, Paris, 1955. Zbl 0067.08302
Reference: [3] Edwards R. E.: Functional analysis.Holt, Rinchart and Winston, New York, 1965. Zbl 0182.16101, MR 0221256
Reference: [4] Hudzik H., Musielak J., Urbański R.: Linear operations in modular spaces.Comment. Math. 23 (1983), 33-40. MR 0709168
Reference: [5] Kantorovich L. V., Akilov G. P.: Functional analysis.Nauka, Moscow, 1984. Zbl 0555.46001, MR 0788496
Reference: [6] Köthe G.: Topological vector spaces. II..Springer-Verlag, New York, Heidelberg, Berlin, 1979. MR 0551623
Reference: [7] Krasnoselskii M. A., Rutickii Ya. B.: Convex functions and Orlicz spaces.Noordhof Ltd. Groningen, 1961. MR 0126722
Reference: [8] Luxemburg W. A.: Banach function spaces.Delft, 1955. Zbl 0068.09204, MR 0072440
Reference: [9] Musielak J., Orlicz W.: Some remarks on modular spaces.Bull. Acad. Polon. Sci. 7 (1959), 661-668. Zbl 0099.09202, MR 0112017
Reference: [10] Musielak J., Waszak A.: Linear continuous functional over some two-modular spaces.Colloquia Math. Soc. Janos Bolyai, 35, Functions, Series, Operators, Budapest 1980, 877-890. MR 0751051
Reference: [11] Nakano H.: Modular semi-ordered linear spaces.Maruzen CO. Nihonbashi, Tokyo, 1951. MR 0038565
Reference: [12] Nowak M.: On the finest of all linear topologies on Orlicz spaces for which $\varphi $-modular convergence implies convergence in these topologies. III..Bull. Pol. Ac. Math. 34 (1986), 19-26. MR 0850309
Reference: [13] Nowak M.: A characterization of the Mackey topology $\tau{(L^{\varphi},L^{varphi^\ast})} on Orlicz spaces.ibidem 34 (1986), 577-583. MR 0884205
Reference: [14] Nowak M.: Orlicz lattices with modular topology I..CMUC 30 (1989) 261-270. Zbl 0679.46021, MR 1014127
Reference: [15] Nowak M.: On the order structure of Orlicz lattices.Bull. Pol. Ac. Math (to appear). Zbl 0767.46005, MR 1101668
Reference: [16] Nowak M.: Mixed topology on normed function spaces. I..ibidem, (to appear). Zbl 0756.46005
Reference: [17] Orlicz W.: A note on modular spaces. VII..Bull. Acad. Polon. Sci. 12 (1964), 305-309. Zbl 0135.16202, MR 0169032
Reference: [18] Peressini A.: Order topological vector spaces.Harper and Row, New York, Evanston, London, 1967. MR 0227731
Reference: [19] Waelbroeck L.: Topological vector spaces and algebras.Springer, Lect. Notes in Math. 230 (1971). Zbl 0225.46001, MR 0467234
Reference: [20] Webb J. H.: Sequential convergence in locally convex spaces.Proc. Camb. Phil. Soc. 64 (1968), 341-364. Zbl 0157.20202, MR 0222602
Reference: [21] Wnuk W.: Representations of Orlicz lattices.Dissert. Math. 235 (1984). Zbl 0566.46018, MR 0820077
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-2_9.pdf 927.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo