Previous |  Up |  Next

Article

Title: Uniform bounds for solutions of a degenerate diffusion equation with nonlinear boundary conditions (English)
Author: Filo, Ján
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 30
Issue: 3
Year: 1989
Pages: 485-495
.
Category: math
.
MSC: 35K05
MSC: 35K55
MSC: 35K60
idZBL: Zbl 0702.35142
idMR: MR1031866
.
Date available: 2008-06-05T21:39:43Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106770
.
Reference: [1] Alikakos N. D.: $L^p$ bounds of solutions of reaction-diffusion equations.Comm. Partial Differential Equations 4 (1979), 827-868. MR 0537465
Reference: [2] Amann H.: Quasilinear parabolic systems under nonlinear boundary conditions.Arch. Rat. Mech. Anal. 92 (1986), 153-192. Zbl 0596.35061, MR 0816618
Reference: [3] DiBenedetto E.: Continuity of weak solutions to a general porous medium equation.Indiana Univ. Math. J. 32 (1983), 83-118. Zbl 0526.35042, MR 0684758
Reference: [4] Fila M.: Boundedness of global solutions for the heat equation with nonlinear boundary conditions.Comment. Math. Univ. Carolinae 30 (1989), 479-484. Zbl 0702.35141, MR 1031865
Reference: [5] Filo J.: $L^∞$-estimate for nonlinear diffusion equations.manuscript. Zbl 0849.35061
Reference: [6] Friedman A., McLeod B.: Blow-up of positive aolutiona of aemilinear heat equations.Indiana Univ. Math. J. 34 (1985), 425-447. MR 0783924
Reference: [7] Ladyzhenskaya O. A., Solonikov V. A., Uraltseva N. N.: Linear and Quasi-linear Equations of Parabolic Type.Nauka, Moscow, 1967.
Reference: [8] Levine H. A., Payne L. E.: Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time.J. Diff. Eqns. 16 (1974), 319-334. MR 0470481
Reference: [9] Nakao M.: Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations.Nonlinear Analysis 10 (1986), 299-314. Zbl 0595.35058, MR 0834507
Reference: [10] Nakao M.: $L^p$ -estimates of solutions of some nonlinear degenerate diffusion equations.J. Math. Soc. Japan 37 (1985), 41-63. Zbl 0584.65073, MR 0769776
Reference: [11] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Academia, Prague, 1967. MR 0227584
Reference: [12] Rothe F.: Uniform bounds from bounded $L_p$-functional$ in reaction-diffusion equations.J. Diff. Eqns. 45 (1982), 207-233. MR 0665998
.

Files

Files Size Format View
CommentatMathUnivCarol_030-1989-3_8.pdf 1.232Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo