Previous |  Up |  Next

Article

Title: Existence of unstable sets for invariant sets in compact semiflows. Applications in order-preserving semiflows (English)
Author: Poláčik, Peter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 2
Year: 1990
Pages: 263-276
.
Category: math
.
MSC: 34C30
MSC: 34C35
MSC: 35B40
MSC: 37-99
MSC: 37C10
MSC: 58F25
idZBL: Zbl 0724.58054
idMR: MR1077897
.
Date available: 2008-06-05T21:43:45Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106856
.
Reference: [AHM] N. D. Alikakos P. Hess H. Matano: Discrete order preserving semigroups and stability for periodic parabolic differential equations.preprint. MR 1027972
Reference: [H1] J. K. Hale: Theory of Functional Differential Equations.Springer-Verlag, New York 1977. Zbl 0352.34001, MR 0508721
Reference: [H2] J. K. Hale: Asymptotic Behaviour of Dissipative Systems.AMS Publications, Providence 1988. MR 0941371
Reference: [He] P. Hess: On stabilization of discrete strongly order-preserving semigroups and dynamical processes.Proceedings of Trends in Semigroup Theory and Applications, M. Dekker (ed.), to appear. MR 1009399
Reference: [Hi1] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. I: Limit sets.SIAM J. Math. Anal. 13 (1982), 167-179. MR 0647119
Reference: [Hi2] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. II: Convergence almost everywhere.SIAM J. Math. Anal. 16 (1985), 423-439. Zbl 0658.34023, MR 0783970
Reference: [Hi3] M. W. Hirsch: Systems of differential equations that are competitive or cooperative. III: Competing species.Nonlinearity 1 (1988), 51-71. MR 0928948
Reference: [Hi4] M. W. Hirsch: The dynamical systems approach to differential equations.Bull. AMS 11 (1984), 1-64. Zbl 0541.34026, MR 0741723
Reference: [Hi5] M. W. Hirsch: Differential equations and convergence almost everywhere in strongly monotone flows.Contemporary Math. 17, Providence 1983, 267-285. MR 0706104
Reference: [Hi6] M. W. Hirsch: Stability and convergence in strongly monotone dynamical sets.J. Reine Angew. Math. 383 (1988), 1-58. MR 0921986
Reference: [M1] H. Matano: Existence of nontrivial unstable sets for equilibriums of strongly orderpreserving systems.J. Fac. Sci. Univ. Tokyo 30 (1983), 645-673. MR 0731522
Reference: [M2] H. Matano: Correction to: "Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems".J. Fac. Sci. Univ. Tokyo 34 (1987), 853-855. Zbl 0656.35009, MR 0927615
Reference: [M3] H. Matano: Strong comparison principle in nonlinear parabolic equations.in "Nonlinear Parabolic Equations: Qualitative Properties of Solutions", L. Boccardo, A. Tesei (eds.), 148-155, Pitman, London 1987. Zbl 0664.35048, MR 0901104
Reference: [Mi] J. Mierczyński: On a generic behaviour in strongly cooperative differential equations.Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. MR 1062664
Reference: [MP] J. Mierczyński P. Poláčik: Symmetry actions on strongly monotone dynamical systems.Math. Annalen 283 (1989), 1-11. MR 0973801
Reference: [PM] J. Palis W. de Melo: Geometric Theory of Dynamical Systems.Springer - Verlag, New York 1982. MR 0669541
Reference: [P1] P. Poláčik: Convergence in smooth strongly monotone flows defined by semilinear parabolic equations.J. Diff. Eqn. 79 (1989), 89-110. MR 0997611
Reference: [P2] P. Poláčik: Domains of attraction of equilibria and monotonicity properties of convergent trajectories in semilinear parabolic systems admitting strong comparison principle.J. Reine Angew. Math. 400 (1989), 32-56. MR 1013724
Reference: [P3] P. Poláčik: Generic properties of strongly monotone semiflows defined by ordinary and parabolic differential equations.Proceedings of the Third Colloquium on Qualitative Properties of Differential Equations, L. Hatvani (ed.), to appear. MR 1062675
Reference: [S1] H. L. Smith: Monotone semiflows generated by functional differential equations.J. Diff. Eqn. 66 (1987), 420-442. Zbl 0612.34067, MR 0876806
Reference: [S2] H. L. Smith: Systems of ordinary differential equations which generate an order preserving flow, A survey of results.SIAM Review 30 (1988), 87-114. Zbl 0674.34012, MR 0931279
Reference: [ST1] H. L. Smith H. R. Thieme: Monotone semiflows in scalar non-quasimonotone functional differential equations.J. Math. Anal. Appl., to appear. MR 1067429
Reference: [ST2] H. L. Smith H. R. Thieme: Remarks on monotone dynamical systems.preprint.
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-2_9.pdf 1.543Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo