[1] Aronszajan N.: 
The theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404. 
MR 0051437[2] Berlinet A.: 
Espaces autoreproduisants et mesure empirique. Méthodes splines en estimation fonctionnde, These de 3 -$^{ème}$ cycle, Lille, 1980. 
Zbl 0436.60011[4] Herrndorf N.: 
The invariance principle for $\varphi$-mixing sequences. no 1, Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. 
MR 0699789[5] Herrndorf N.: 
A functional central limit theorem for weakly dependent sequences of random variables. no 1, Ann. Probab. 12 (1984), 141-153. 
MR 0723735 | 
Zbl 0536.60030[7] Ibragimov I. A.: 
Some limit theorems for stationary processes. Theory Probab. Appl. 7 (1962), 349-382. 
MR 0148125 | 
Zbl 0119.14204[8] Mason D.: 
Weak convergence of the weighted empirical quantile process in $L^2[0,1]$. no 1, Ann. Probab. 12 (1984), 243-255. 
MR 0723743[9] Mori T., Yoshihara K. I.: 
A note on the central limit theorem for the stationary strongmixing sequences. Yokohama Math. J. 34 (1986), 143-146. 
MR 0886062[11] Peligrad M.: 
An invariance principle for dependent random variables. no 4, Z. Wahrsch. verw. Gebiete 57 (1981), 495-507. 
MR 0631373 | 
Zbl 0485.60032[12] Phillip W.: 
The central limit problem for mixing sequences of random variables. Z. Wahrsch. verw. Gebiete 12 (1969), 155-171. 
MR 0246356[13] Suquet C.: Espaces autoreproduisants et mesures aléatoires. Thése de  3-$^{ème}$ cycle, Lille, 1986.
[14] Volný D.: 
A central limit theorem for non stationary mixing processes. no 2, Comment. Math. Univ. Carolinae 30 (1989), 405-407. 
MR 1014142[15] Withers C. S.: 
Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 57 (1981), n°-4, 509-534;  
MR 0631374 | 
Zbl 0451.60027[15b] Withers C. S.: 
Corrigendum to Central limit theorems for dependent variables I. Z. Wahrsch. verw. Gebiete, 63 (1983), 555. 
MR 0705626 | 
Zbl 0513.60034