Previous |  Up |  Next

Article

Title: Characterization of chaos for continuous maps of the circle (English)
Author: Kuchta, Milan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 2
Year: 1990
Pages: 383-390
.
Category: math
.
MSC: 26A18
MSC: 37B99
MSC: 37D45
MSC: 54H20
MSC: 58F13
idZBL: Zbl 0728.26011
idMR: MR1077909
.
Date available: 2008-06-05T21:44:20Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106868
.
Reference: [1] L. Block: Periods of periodic points of maps of the circle which have a fixed point.Proc. Amer. Math. Soc. 82 (1981), no. 3, pp. 481-486. Zbl 0464.54046, MR 0612745
Reference: [2] L. Block J. Guckenheimer M. Misiurewicz L. S. Young: Periodic points and topological entropy of one-dimensional maps.in book: Global theory of dynamical systems, (Proc. Internal Conf., Northwestern Univ., Evanston, III., 1979, p. 18-34. Lecture Notes in Math. 812, Springer, Berlin 1980 MR 0591173
Reference: [3] R. L. Devaney: An Introduction to Chaotic Dynamical Systems.Second Edition, Addison-Wesley, New York 1989. Zbl 0695.58002, MR 1046376
Reference: [4] R. Ito: Rotation sets are closed.Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, pp. 107-111. Zbl 0484.58027, MR 0591976
Reference: [5] K. Janková J. Smítal: Characterization of chaos.Bull. Austral. Math. Soc. 34 (1986), no. 2, pp. 283-292. MR 0854575
Reference: [6] M. Kuchta J. Smítal: Two point scrambled set implies chaos.in book: European Conference on Iteration Theory, (ECIT 87), World Sci. Publishing Co., Singapore. MR 1085314
Reference: [7] T. Y. Li J. A. Yorke: Period three implies chaos.Amer. Math. Monthly 82 (1975), no. 10, pp. 985-992. Zbl 0351.92021, MR 0385028
Reference: [8] M. Misiurewicz: Periodic points of maps of degree one of a circle.Ergod. Th. & Dynam. Sys. 2 (1982), no. 2, pp. 221-227. Zbl 0508.58038, MR 0693977
Reference: [9] M. Misiurewicz: Twist sets for maps of the circle.Ergod. Th. & Dynam. Sys. 4 (1984), no. 3, pp. 391-404. Zbl 0573.58019, MR 0776876
Reference: [10] J. Smítal: Chaotic functions with zero topological entropy.Trans. Amer. Math. Soc. 297 (1986), no. 1, pp. 269-282. MR 0849479
Reference: [11] A. N. Šarkovskii: On cycles and the structure of a continuous mapping.Ukrain. Mat. Ž. 17 (in Russian) (1965), pp. 104-111. MR 0186757
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-2_21.pdf 843.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo