Previous |  Up |  Next

Article

Title: On convexity and smoothness of Banach space (English)
Author: Banaś, Józef
Author: Hajnosz, Andrzej
Author: Wędrychowicz, Stanisław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 3
Year: 1990
Pages: 445-452
.
Category: math
.
MSC: 46B07
MSC: 46B10
MSC: 46B20
idZBL: Zbl 0723.46010
idMR: MR1078479
.
Date available: 2008-06-05T21:44:51Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106880
.
Reference: [1] Alonso J., Ullan A.: Moduli of convexity.Functional Analysis and Approximation, Edited by P. L. Papini, Bagni di Lucca, Italy, May 16-20, 1988, 25-33. MR 1001569
Reference: [2] Banas J.: On moduli of smoothness of Banach spaces.Bull. Pol. Acad. Sci. Math. 34 (1986), 287-293. Zbl 0606.46010, MR 0874871
Reference: [3] Berg I. D., Sims B.: Denseness of operators which attain their numerical radius.Ser. A, J. Austral. Math. Soc. 36 (1984), 130-133. Zbl 0561.47004, MR 0720006
Reference: [4] Clarkson J. A.: Uniformly convex spaces.Trans. Amer. Math. Soc. 40 (1936), 396-414. Zbl 0015.35604, MR 1501880
Reference: [5] Day M. M.: Uniform convexity in factor and conjugate spaces.Ann. of Math. 45 (1944), 375-385. Zbl 0063.01058, MR 0010779
Reference: [6] Day M. M.: Normed linear spaces.Ergebnisse Mathematik und ihrer Grenzgebiete, 3rd Ed., Vol. 21, Springer Verlag, 1973. Zbl 0268.46013, MR 0344849
Reference: [7] Diestel J.: Geometry of Banach spaces.Selected topics, Lecture Notes, Springer Verlag, 1975. Zbl 0307.46009, MR 0461094
Reference: [8] Van Dulst D.: Reflexive and superreflexive Banach spaces.Math. Centre Tracts 102, Amsterdam, 1978. Zbl 0412.46006, MR 0513590
Reference: [9] Goebel K., Kirk W. A.: Topics in metric fixed point theory.Cambridge University Press, to appear. Zbl 0708.47031, MR 1074005
Reference: [10] Köthe G.: Topological vector spaces I.Springer Verlag, 1969. MR 0248498
Reference: [11] Lindenstrauss J.: On the modulus of smoothness and divergent series in Banach spaces.Mich. Math. J. 10 (1963), 241-252. Zbl 0115.10001, MR 0169061
Reference: [12] Lindenstrauss J.,Tzafriri L.: Classical Banach space.Lecture Notes, Springer Verlag, 1973. MR 0415253
Reference: [13] Milman V. D.: The geometric theory of Banach spaces, Part II.in Russian, Uspehi Mat. Nauk 26 (1971), 73-149. MR 0420226
Reference: [14] Nordlander G.: The modulus of convexity in normed linear spaces.Ark. Math. 4 (1960), 15-17. Zbl 0092.11402, MR 0140915
Reference: [15] Opial Z.: Lecture notes on nonexpansive and monotone mappings in Banach spaces.Lecture Notes, Center for Dynamical Systems, Brown University, 1967.
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-3_7.pdf 628.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo