Previous |  Up |  Next

Article

Title: On accretive multivalued mappings in Banach spaces (English)
Author: Kolomý, Josef
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 4
Year: 1990
Pages: 701-710
.
Category: math
.
MSC: 47H04
MSC: 47H06
MSC: 47H15
MSC: 47H17
MSC: 47J05
MSC: 47J25
MSC: 54C60
idZBL: Zbl 0728.47036
idMR: MR1091367
.
Date available: 2008-06-05T21:46:02Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106905
.
Reference: [1] Barbu V.: Semigrupuri de contraciii nelineare in spatii Banach.Ed. Acad. Rep. Soc. Romania, Bucaresti 1974. MR 0370280
Reference: [2] Berens H., Hetzelt L.: On accretive operators on $l\sp \infty\sb n$.Pacific J. Math. 125 (1986), 301-315. MR 0863528
Reference: [3] Browder F. E.: Semicontractive and semiaccretive nonlinear mappings in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 660-665. Zbl 0164.44801, MR 0230179
Reference: [4] Calvert B., Fitzpatrick S., Solomon W.: Boundedness of approximations in summation of accretive operators.Ann. sti Univ. Al. I. Cuza, Iaşi 33 (1987), 229-234. Zbl 0652.47034, MR 0966674
Reference: [5] Ciorănescu I.: Aplicatii da dualitate in analiza funkiionala neliniara.Ed. Acad. Rep. Soc. Romania, Bucuresti 1974. MR 0383157
Reference: [6] Cudia D. F.: The geometry of Banach spaces: Smoothness.Trans. Amer. Math. Soc. 110 (1964), 284-314. Zbl 0123.30701, MR 0163143
Reference: [7] Engl H. W.: Weak convergence of asymptotically regular sequences for nonexpansive mappings and connections with certain Chebyshef-centers.Nonlinear Anal. 1 (1977), 495-501. Zbl 0409.47040, MR 0636939
Reference: [8] Fabian M.: On strong continuity of monotone mappings in reflexive Banach spaces.Acta Polytechnica 6 (1977), 85-98. MR 0467406
Reference: [9] Fabian M.: On singlevaluedness (and strong continuity) of maximal monotone mappings.Comment. Math. Univ. Carolinae 18 (1977), 19-39. MR 0442764
Reference: [10] Fitzpatrick S. P.: Continuity of non-linear monotone operators.Proc. Amer. Math. Soc. 62 (1977), 111-116. MR 0425687
Reference: [11] Fitzpatrick P. M., Hess P., Kato T.: Local boundedness of monotone type operators.Proc. Japan Acad. Ser. A Math. Sci. 48 (1972), 275-277. Zbl 0252.47057, MR 0312336
Reference: [12] Gobbo L.: On the asymptotic behavior of the inverse of an m-accretive operator in a Banach space.Rend. Sem. Mat. Univ. Poiitechn. Torino 42 (1984), 47-64. MR 0812630
Reference: [13] Gossez J. P., Lami Dozo E.: Some geometric properties related to the fixed point theory for nonexpansive mappings.Pacific J. Math. 40 (1972), 565-573. MR 0310717
Reference: [14] Hudzik H.: Uniform convexity of Musielak-Orlicz spaces with Luxemburg's norm.Comment. Math. Univ. Carolinae 23 (1983), 21-32. Zbl 0595.46027, MR 0709167
Reference: [15] Hudzik H.: Strict convexity of Musielak-Orlicz spaces with Luxemburg's norm.Bull. Acad. Pol. Sci. Math. 29 (1981), 137-144. Zbl 0479.46014, MR 0640468
Reference: [16] Kamińska A.: On uniform convexity of Orlicz spaces.Proc. Koninklijke Nederl. Akad. Wetensch., Amsterdam, ser. A 85.
Reference: [17] Kato T.: Accretive operators and nonlinear equations in Banach spaces.Proc. Symp. Pure Math. 18, Amer. Math. Soc., Providence, R.I., 1970, 138-161. MR 0271782
Reference: [18] Kenderov P. S.: Multivalued monotone operators are almost everywhere single-valued.Studia Math. 56 (1976), 199-203. MR 0428122
Reference: [19] Kido K.: Strong convergence of resolvents of monotone operators in Banach spaces.Proc. Amer. Math. Soc. 103 (1988), 752-758. Zbl 0671.47042, MR 0947652
Reference: [20] Köthe G.: Topologische lineare Rdume I.Springer-Verlag, Heicelberg 1960. MR 0130551
Reference: [21] Kolomý J.: On mapping and invariance of domain theorem and accretive operators.Boll. U.M.I. 1-B (1987), 235-246. MR 0895461
Reference: [22] Kolomý J.: Maximal monotone and accretive multivalued mappings and structure of Banach spaces.Function Spaces, Proc. Int. Conf. Poznan, 1986, (ed. J. Musielak), Teubner-Texte zur Mathematik 103 (1988), 170-177. MR 1066532
Reference: [23] Kolomý J.: Resolvents and selections of accretive mappings in Banach spaces.Proc. 18th Winter School, Srní 1990, Acta Univ. Carolinae (to appear). MR 1101415
Reference: [24] Morosanu G.: Asymptotic behavior of resolvents for a monotone mapping in a Hilbert space.Atti Accad. Naz. dei Lincei, Ser. 8, 59 (1976), 565-570. MR 0477891
Reference: [25] Reich S.: Approximating zeros of accretive operators.Proc. Amer. Math. Soc. 51 (1975), 381-384. Zbl 0294.47042, MR 0470762
Reference: [26] Reich S.: Extension problems for accretive sets in Banach spaces.J. Functional Anal. 26 (1977), 378-395. Zbl 0378.47037, MR 0477893
Reference: [27] Reich S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces.J. Math. Anal. Appl. 75 (1980), 287-292. Zbl 0437.47047, MR 0576291
Reference: [28] Reich S.: Asymptotic behavior of resolvents in Banach spaces.Atti Accad. Naz. dei Lincei, Ser. 8, 67 (1980), 27-30. MR 0617271
Reference: [29] Chen Shutao: Convexity and smoothness of Orlicz spaces, Geometry of Orlicz spaces I.Function Spaces, Proc. Int. Conf. Poznań, 1986 (ed. J. Musielak), Teubner-Texte zur Mathematik 103 (1988), 12-19. MR 1066509
Reference: [30] Takahasi W., Ueda Y.: On Reich's strong convergence theorems for resolvents of accretive operators.J. Math. Anal. Appl. 194 (1984), 546-553.
Reference: [31] Veselý L.: Some new results on accretive multivalued operators.Comment. Math. Univ. Carolinae 30 (1989), 45-55. MR 0995700
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-4_10.pdf 1.097Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo