| Title:
|
Not all dyadic spaces are supercompact (English) |
| Author:
|
Bell, Murray G. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
31 |
| Issue:
|
4 |
| Year:
|
1990 |
| Pages:
|
775-779 |
| . |
| Category:
|
math |
| . |
| MSC:
|
54B15 |
| MSC:
|
54D30 |
| MSC:
|
54G20 |
| idZBL:
|
Zbl 0716.54017 |
| idMR:
|
MR1091375 |
| . |
| Date available:
|
2008-06-05T21:46:27Z |
| Last updated:
|
2012-04-28 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/106913 |
| . |
| Reference:
|
[1] Alexandroff P. S.: Zur Theorie der topologischen Räume.(Doklady) Acad. Sci. URSS 11 (1936), 55-58. Zbl 0014.13502 |
| Reference:
|
[2] Bell M. G.: Not all compact spaces are supercompact.General Topology Appl. 8 (1978), 151-155. MR 0474199 |
| Reference:
|
[3] Bell M. G.: Polyadic spaces of arbitrary compactness numbers.Comment. Math. Univ. Carolinae 26 (1985), 353-361. Zbl 0587.54039, MR 0803933 |
| Reference:
|
[4] Douwen E. van, Mill J. van: Supercompact Spaces.Topology and its Applications 13 (1982), 21-32. MR 0637424 |
| Reference:
|
[5] Engelking R.: Cartesian products and dyadic spaces.Fund. Math. 57 (1965), 287-304. Zbl 0173.50603, MR 0196692 |
| Reference:
|
[6] Groot J. de: Supercompactness and superextensions.in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. MR 0244955 |
| Reference:
|
[7] Mill J. van, Mills C. F.: A nonsupercompact continuous image of a supercompact space.Houston J. Math. 5 (1979), 241-247. MR 0546758 |
| Reference:
|
[8] Mills C. F.: Compact topological groups are supercompact.Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978. |
| Reference:
|
[9] Pelczynski A.: Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions.Dissertationes Math. 58, Warszawa 1968. MR 0227751 |
| Reference:
|
[10] Rudin M. E.: Lectures on set theoretic topology.Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. MR 0367886 |
| Reference:
|
[11] Strok M., Szymanski A.: Compact metric spaces have binary bases.Fund. Math. 89 (1975), 81-91. Zbl 0316.54030, MR 0383351 |
| . |