Previous |  Up |  Next

Article

Title: Not all dyadic spaces are supercompact (English)
Author: Bell, Murray G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 31
Issue: 4
Year: 1990
Pages: 775-779
.
Category: math
.
MSC: 54B15
MSC: 54D30
MSC: 54G20
idZBL: Zbl 0716.54017
idMR: MR1091375
.
Date available: 2008-06-05T21:46:27Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/106913
.
Reference: [1] Alexandroff P. S.: Zur Theorie der topologischen Räume.(Doklady) Acad. Sci. URSS 11 (1936), 55-58. Zbl 0014.13502
Reference: [2] Bell M. G.: Not all compact spaces are supercompact.General Topology Appl. 8 (1978), 151-155. MR 0474199
Reference: [3] Bell M. G.: Polyadic spaces of arbitrary compactness numbers.Comment. Math. Univ. Carolinae 26 (1985), 353-361. Zbl 0587.54039, MR 0803933
Reference: [4] Douwen E. van, Mill J. van: Supercompact Spaces.Topology and its Applications 13 (1982), 21-32. MR 0637424
Reference: [5] Engelking R.: Cartesian products and dyadic spaces.Fund. Math. 57 (1965), 287-304. Zbl 0173.50603, MR 0196692
Reference: [6] Groot J. de: Supercompactness and superextensions.in Contributions to extension theory of topological structures, Symp. Berlin 1967, Deutscher Verlag Wiss., Berlin 1969, 89-90. MR 0244955
Reference: [7] Mill J. van, Mills C. F.: A nonsupercompact continuous image of a supercompact space.Houston J. Math. 5 (1979), 241-247. MR 0546758
Reference: [8] Mills C. F.: Compact topological groups are supercompact.Wiskundig Seminarium rapport nr. 81, Vrije Univ., Amsterdam 1978.
Reference: [9] Pelczynski A.: Linear extensions, linear averagings, and their application to linear topological classification of spaces of continuous functions.Dissertationes Math. 58, Warszawa 1968. MR 0227751
Reference: [10] Rudin M. E.: Lectures on set theoretic topology.Regional Conf. Ser. in Math. No. 23, Amer. Math. Soc., Providence, RI, 1977. MR 0367886
Reference: [11] Strok M., Szymanski A.: Compact metric spaces have binary bases.Fund. Math. 89 (1975), 81-91. Zbl 0316.54030, MR 0383351
.

Files

Files Size Format View
CommentatMathUnivCarol_031-1990-4_18.pdf 538.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo