Previous |  Up |  Next

Article

Title: On asymptotic properties and distribution of zeros of solutions of $y''+f(t,y,y')=0$ (English)
Author: Bartušek, Miroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 14
Issue: 1
Year: 1978
Pages: 1-12
.
Category: math
.
MSC: 34C10
idZBL: Zbl 0389.34024
idMR: MR512740
.
Date available: 2008-06-06T06:04:20Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/106986
.
Reference: [1] Bartušek M.: On Asymptotic Properties and Distribution of Zeros of Solutions of y" = q(t)y.Acta F.R.N. Univ. Comenianae, Math., XXXII, 1975, 69-86. MR 0539861
Reference: [2] Бapтyшeк M.: O нyляx кoлeблющuxcя peшeнuй ypaвнeнuя $[p(t) x']' + f(t, x, x') = 0$.Дyдap. ypaв. XII, 1976, 621-625.
Reference: [3] Bartušek M.: On Zeros of Solutions of the Differential Equation $[p(t)y']' + f(t, y, y') = 0$.Arch. Math. XI, No 4, 1975, 187-192. MR 0409975
Reference: [4] Bartušek M.: On Distribution of Zeros of Solutions of Differential Equations $y'' + f(t, y, y') = 0$.Arch. Math. XIII, No 2, 1977, 69-74. MR 0492523
Reference: [5] Bartušek M.: Monotonicity Theorems Concerning Differential Equations $y" +f(t, y, y') = 0$.Arch. Math. XII, No 4, 1976, 169-178. MR 0430410
Reference: [6] Bihari I.: Oscillation and Monotonity Theorems Concerning Non-linear Differential Equations of the Second Order.Acta Math. Acad. Sci. Hung., IX, No 1-2, 1958, 83-104. MR 0095321
Reference: [7] Burton T., Grimmer R.: On the Asymptotic Behaviour of Solutions of $x" + a(t)f(x) = 0$.Proc. Camb. Phil. Soc., 70, 1971, 77-88. MR 0293193
Reference: [8] Dlotko T.: Sur làllure asymptotique des solutions de l'equation différentielle ordinaire du second ordre.Ann. polon. math., 11, 1961, No 3, 261-273. MR 0133499
Reference: [9] Ендовицкий И. И.: Heкomopыe ycлoвия нeycmoйчuвocmu pemenuй ypaвnenuя $u" + p(x) u = 0$.M3B. BV30B, Maт., 140, Ho 1, 1974, 47-51.
Reference: [10] Изюмова Д. B., Kичурадзe H. T.: Heкomopыe зaмечания o pemeuях ypaenenuй $u" + a(t)f(u) = 0$.Дифф. ypaв., IV, Ho 4, 1968, 589-605.
Reference: [11] Kaтранов A. T.: O нулях колеблющихся pemenuй ypaвnenuя $x" + a(t)f(x) = 0$.Дифф. ypaв., VII, Ho 5, 1971, 930-933. MR 0287078
Reference: [12] Kaтранов A. T.: Oб acuмnmomичecком noвeдenuu колеблющихся pemenuй ypaвnenuя $\ddot{x} +f(t, x)g(\dot{x}) = 0$.Ah$*. ypas., VIII, Ho 6, 1972, 1111-1115.
Reference: [13] Kroopnik A.: Properties of Solutions of Differential Equations of the Form $y" + a(t)b(y) = 0$.Proc. Amer. Math. Soc., 34, No 1, 1972, 319-320.
Reference: [14] Lalli B. S.: On Boundedness of Solutions of Certain Second Order Differential Equations.J. Math. Anal. Appl., 25, 1969, 182-188. MR 0239184
Reference: [15] Caнсонe Дж.: Oбыкновенныe дифференциальные ypaвнения II.Moscow 1954.
Reference: [16] Utz: Properties of Solutions of $u" + q(t)u^{2n-1} =0$. II.Monatsh. Math., 69, No 4, 1965, 353-361. MR 0193334
Reference: [17] Waltman P.: Some Properties of Solutions of $u" + a(t)f(u) = 0$.Monatsh. Math., 67, 1963, No 1,50-54. MR 0147700
Reference: [18] Wong J. S. W.: Boundedness Theorems for Solutions of $u"(t) + a(t) f(u)g(u') = 0$. IV.L'enseignement Math., VII, 1961, 157-165. MR 0234059
Reference: [19] Wong J. S. W., Burton T.: Some Properties of Solutions of $u"(t) + a(t) f(u)g(u') = 0$. II.Monatsh. Math., 69, No 4, 1965, 368-374. MR 0186885
.

Files

Files Size Format View
ArchMath_014-1978-1_1.pdf 1.056Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo