Previous |  Up |  Next

Article

Title: The Riccati differential equation with complex-valued coefficients and application to the equation $x''+P(t)x'+Q(t)x=0$ (English)
Author: Tesařová, Zuzana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 18
Issue: 3
Year: 1982
Pages: 133-143
.
Category: math
.
MSC: 34D05
idZBL: Zbl 0514.34042
idMR: MR682101
.
Date available: 2008-06-06T06:10:59Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107135
.
Reference: [1] Butlewski A.: Sur un mouvement plan.Ann. Polon. Math. 13 (1963), 139-161. Zbl 0118.30503, MR 0153936
Reference: [2] Kulig C.: On a System of Differential Equations.Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, LXXVII (1963), 37-48. Zbl 0267.34029, MR 0204763
Reference: [3] Ráb M.: The Riccati Differential Equation with Complex-valued coefficients.Czechoslovak Math. J. 20 (1970), 491-503. Zbl 0215.14201, MR 0268452
Reference: [4] Ráb M.: Geometrical approach to the study of the Riccati differential equation with complex-valued coefficients.Journal of Differential Equations 25 (1977), 108-114. MR 0492454
Reference: [5] Ráb M.: Asymptotic behaviour of the equation $x" + p(t)x' + q(t)x = 0$ with complex-valued coefficients.Arch. Math. (Brno) 4 (1975), 193-204. MR 0404776
Reference: [6] Kalas J.: Asymptotic behaviour of the solutions of the equation dz/dt = f(t, z) with a complex-valued function f.Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary) 1979, pp. 431-462. MR 0680606
Reference: [7] Kalas J.: On the asymptotic behaviour of the equation dz/dt =f(t,z) with a complex-valued function f.Arch. Math. (Brno) 17 (1981), 11-12. Zbl 0475.34028, MR 0672484
Reference: [8] Kalas J.: On certain asymptotic properties of the solutions of the equation $\dot{z} =f(t, z)$ with a complex-valued function f.Czech. Math. Journal, to appear. MR 0718923
Reference: [9] Kalas J.: Asymptotic behaviour of equations $\dot{z} = q(t, z)-p(t) z^2$ and $\ddot{x} = x \varphi (t, \dot{x} x^{-1})$.Arch. Math. (Brno) 17 (1981), 191-206. MR 0672659
.

Files

Files Size Format View
ArchMath_018-1982-3_4.pdf 875.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo