Previous |  Up |  Next

Article

Title: Hopf bifurcation in symmetric systems (English)
Author: Vanderbauwhede, A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 22
Issue: 1
Year: 1986
Pages: 29-53
.
Category: math
.
MSC: 34C25
MSC: 37G99
idZBL: Zbl 0628.58035
idMR: MR868118
.
Date available: 2008-06-06T06:15:41Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107244
.
Reference: [1] Th. Bröckner, L. Lander: Differentiable germs and catastrophes.LMS Lecture Notes Series 17, Cambridge University Pгess, Cambridge, 1975.
Reference: [2] M. Golubitsky, I. Stewart: Hopf bifurcation in the presence of symmetry.Arch. Rat. Mech. Anal. 87 (1985), 107-165. Zbl 0588.34030, MR 0765596
Reference: [3] G. Iooss: Bifurcation and transition to turbulence in hydrodynamics.Lecture Notes in Math. 1057, Springer-Verlag, 1984, p. 152-201. Zbl 0537.58037
Reference: [4] G. Schwarz: Smooth functions invariant under the action of a compact Lie group.Topology, 14 (1975), 63-68. Zbl 0297.57015, MR 0370643
Reference: [5] E. Takigawa: Bifurcation of waves of reaction-diffusion equations on axisymmetric domains.PhD Thesis, Brown University, 1981.
Reference: [6] A. Vanderbauwhede: Local bifurcation and symmetry.Research Notes in Math., vol. 75, Pitman, London, 1982. Zbl 0539.58022
Reference: [7] A. Vanderbauwhede: Bifurcation of periodic solutions in a rotationally symmetric oscillation system.J. Reine Augew. Math. 360 (1985), 1-18. Zbl 0555.34036, MR 0799655
Reference: [8] S. A. Van Gils: Some studies in dynamical system theory.PhD Thesis, Delft, 1984.
Reference: [9] H. Whitney: Differentiable even functions.Duke Math. J. 10 (1943), 159-160. Zbl 0063.08235, MR 0007783
.

Files

Files Size Format View
ArchMath_022-1986-1_4.pdf 1.403Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo