Previous |  Up |  Next

Article

Title: Transformations of linear second order ordinary differential equations (English)
Author: Staněk, Svatoslav
Author: Vosmanský, Jaromír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 22
Issue: 1
Year: 1986
Pages: 55-59
.
Category: math
.
MSC: 34B05
MSC: 34B99
MSC: 34C20
idZBL: Zbl 0644.34029
idMR: MR868119
.
Date available: 2008-06-06T06:15:44Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107245
.
Reference: [1] I. Bihary: Zeros of the Böcher - function and its derivative with respect to differential equation $y" + p(x) y = 0$ II.(to appear).
Reference: [2] O. Borůvka: Linear Differential Transformations of the Second Order.The English Univ. Press, (1971) London. MR 0463539
Reference: [3] Z. Došlá: Monotonicity properties of the linear combination of derivatives of some special functions.(to appear). Arch. Math. (Brno), 21, (1985), 147 - 157. MR 0833125
Reference: [4] A. Erdélyi, al: Higher transcendental functions.vol. 2, Mc Graw-Hill, New York, 1954.
Reference: [5] M. Háčik: Generalization of amplitude, phase and accompanying differential equations.Acta Univ. Palackianae Olomucensis, FRN, 33, (1971), 7-17. MR 0352583
Reference: [6] J. Heading: Consistency invariants and transformations between second order linear differential equations.Preprint.
Reference: [7] M. Laitoch: L'équation associée dans la théorie des transformations des équations différentielles du second ordre.Acta Univ. Palackianae Olomucensis, 12, 0963), 45 - 62. Zbl 0256.34005, MR 0276527
Reference: [8] M. Muldoon: On the zeros of a function related to Bessel functions.Arch. Math. (Brno), 18, (1982), 22-34. Zbl 0504.33005, MR 0683343
Reference: [9] S. Staněk: On a certain transformation of the solution of two second order differential equations.Acta Univ. Palackianae Olomucensis, FRN, 76, math. XXII, (1983), 81-90. MR 0744702
Reference: [10] J. Vosmanský: The monotonicity of extremants of integrals of the differential equation y'' + q(t)y = 0.Arch. Math. (Brno), 2, (1966), 105-111. Zbl 0219.34035, MR 0216072
Reference: [11] J. Vosmanský: Certain higher monotonicity properties of i-th derivatives of solutions of y'' + a(t) y' + b(t) y = 0.Arch. Math. (Brno), X, (1974), 87-102. MR 0399578
.

Files

Files Size Format View
ArchMath_022-1986-1_5.pdf 522.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo