Previous |  Up |  Next


Title: Lepagean 2-forms in higher order Hamiltonian mechanics. II. Inverse problem (English)
Author: Krupková, Olga
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 23
Issue: 3
Year: 1987
Pages: 155-170
Category: math
MSC: 37J99
MSC: 70H05
idZBL: Zbl 0651.58010
idMR: MR930318
Date available: 2008-06-06T06:17:49Z
Last updated: 2012-05-09
Stable URL:
Related article:
Reference: [13] E. Engels W. Sarlet: General solution and invariants for a class of lagrangian equations governed by a velocity-dependent potential energy.J. Phys. A: Math., Nucl. Gen. 6 (1973), 818-825. MR 0418700
Reference: [14] P. Havas: The range of application of the Lagrange formalism I.Nuovo Cimento (Suppl.) 3 (1957), 363-388. Zbl 0077.37202, MR 0090972
Reference: [15] D. Kгupka A. E. Sattaгov: The inverse problem of the calculus of variations for Finsler structures.Math. Slovaca (35) 3 (1985), 217-222. MR 0808354
Reference: [16] O. Kгupková: Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity.Arch. Math. (Bгno) 2 (1986), 97-120. MR 0868124
Reference: [17] J. Novotný: On the inverse variational problem in the classical mechanics.Pгoc. Conf. Diff. Geom. Appl. 1980, Charles University of Prague (1981), 189-195. MR 0663225
Reference: [18] R. M. Santilli: Foundations of Theoretical Physics I., The Inverse Problem in Newtonian Mechanics.Springeг Verlag, New Yoгk 1978. MR 0514210
Reference: [19] W. Saгlet: On the transition between second-order and first-order systems within the context of the inverse problem of Newtonian mechanics.Hadronic J. 2 (1979), 407-432. MR 0529840
Reference: [20] W. Sarlet: The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics.J. Phys. A: Math. Gen. 15 (1982), 1503-1517. Zbl 0537.70018, MR 0656831
Reference: [21] O. Štěpánková: The local inverse problem of the calculus of variations in higher order Hamiltonian mechanics.Geometгical Methods in Physics, Pгoc. Conf. Diff. Geom. Appl., Sept. 1983, J. E. Puгkyně University, Bгno (1984), 275-287. MR 0793216
Reference: [22] E. T. Whittaker: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the problem of Three Bodies.2-nd Ed. Cambгidge, the Univeгsity Pгess, 1917. MR 0992404


Files Size Format View
ArchMath_023-1987-3_3.pdf 1.534Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo