Previous |  Up |  Next

Article

Title: On some non-linear boundary value problems for ordinary differential equations (English)
Author: Šeda, Valter
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 25
Issue: 3
Year: 1989
Pages: 207-222
.
Category: math
.
MSC: 34B15
MSC: 34B27
idZBL: Zbl 0702.34024
idMR: MR1188065
.
Date available: 2008-06-06T06:20:40Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107358
.
Reference: [1] H. Amann: Super solutions, monotone iterations, and stability.J. Differential Equations 21 (1976), 363-377. MR 0407451
Reference: [2] C. Fabry J. Mawhin, M. N. Nkashama: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173-180. MR 0818822
Reference: [3] P. Hartman: Ordinary Differential Equations.J. Wiley, New York, 1964 (Russian translation, Izdat. Mir, Moskva, 1970). Zbl 0125.32102, MR 0171038
Reference: [4] I. T. Kiguradze, A. G. Lomtatidze: On certain boundary value problems for second-order linear ordinary differential equations with singularities.J. Math. Anal. Appl. 101 (1984), 325-347. Zbl 0559.34012, MR 0748576
Reference: [5] J. Mawhin: Points fixes, points critiques et problèmes aux limites.Sémin. Math. Sup. no. 92, Presses Univ. Montréal, Montréal 1985. Zbl 0561.34001, MR 0789982
Reference: [6] J. Nieto: Nonlinear second-order periodic boundary value problems.J. Math. Anal. Appl. 130 (1988), 22-29. Zbl 0678.34022, MR 0926825
Reference: [7] K. Schmitt: A nonlinear boundary value problem.J. Differential Equations 7 (1970), 527-537. Zbl 0198.12301, MR 0254314
Reference: [8] V. Šeda: Antitone operators and ordinary differential equations.Czech. Math. J. 31 (1981), 531-553. MR 0631601
Reference: [9] V. Šeda: A correct problem at a resonance.(preprint). MR 0996746
.

Files

Files Size Format View
ArchMath_025-1989-3_4.pdf 1.191Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo