Previous |  Up |  Next

Article

Title: Singular quadratic functionals and transformation of linear Hamiltonian systems (English)
Author: Došlá, Zuzana
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 25
Issue: 3
Year: 1989
Pages: 223-234
.
Category: math
.
MSC: 34C10
MSC: 49K15
idZBL: Zbl 0825.34020
idMR: MR1188066
.
Date available: 2008-06-06T06:20:44Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107359
.
Reference: [1] C. D. Ahlbrandt D. B. Hinton R. T. Lewis: The effect of variable change on oscillation and disconjugate criteria with application to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81 (1981), 234-277. MR 0618771
Reference: [2] J. H. Barrett: A Prüfer transformation for matrix differential equations.Proc. Ameг. Math. Soc. 8 (1957), 510-518. Zbl 0079.10603, MR 0087821
Reference: [3] O. Borůvka: Lineare Differential transformationen 2. Ordung.VEB Verlag Berlin 1967. MR 0236448
Reference: [4] W. A. Coppel: Disconjugacy.Lectures Notes in Math. 220, Springer-Verlag, New York-Berlin-Heidelberg 1971. Zbl 0224.34003, MR 0460785
Reference: [5] Z. Došlá O. Došlý: On transformations of singular quadratic functionals corresponding to equation $(py')' + qy = 0$.Arch. Math. (Brno) 24, No. 2 (1988), 75-82. MR 0983225
Reference: [6] O. Došlý: On transformation and oscillation of self-adjoint linear differential systems and the reciprocals.to appear in Annal. Pol. Math.
Reference: [7] W. Leighton Z. Nehari: On the oscillation of solutions of self-adjoint linear differential equations of the fourth order.Tгans. Amer. Math. Soc. 89 (1958), 325-377. MR 0102639
Reference: [8] V. Kaňovský: Global transformations of linear differential equations and quadratic functionals I.Arch. Math. 19 (1983). MR 0725199
Reference: [9] V. Kaňovský: Global transformations of linear differential equations and quadratic functionals II.Arch. Math. 20 (1984), 149-156. MR 0784866
Reference: [10] J. Krbila: Investigation of quadratic functionals by transformation of linear second order differential equation.(Czech), Sborník prací VŠD a VÚD 44 (1971), 5-17. MR 0322242
Reference: [11] W. Leighton M. Morse: Singular quadratic functionals.Trans. Amer. Math. Soc. 40 (1936), 252-286. MR 1501873
Reference: [12] W. Leighton: Principal quadratic functionals.Trans. Amer. Math. Soc. 68 (1949), 253-274 Zbl 0041.22404, MR 0034535
Reference: [13] W. Leighton A. Martin: Quadratic functionals with a singular end point.Trans. Amer. Math. Soc. 78 (1955), 98-128. MR 0066570
Reference: [14] M. Morse: Singular quadratic functionals.Math. Ann. 201 (1973), 315-340. Zbl 0237.49013, MR 0343150
Reference: [15] M. Morse: The calculus of variations in the large.2nd ed., Amer. Math. Soc. Colloq. Poubl., vol. 18, Amer. Math. Soc., Providence R. I., 1960. MR 1451874
Reference: [16] W. T. Reid: Sturmian Theory for Ordinary Differential Equations.Springer-Verlag, New York-Berlin-Heidelberg 1980. Zbl 0459.34001, MR 0606199
Reference: [17] E. C. Tomastic: Singular quadratic functionals of n dependent variables.Trans. Amer. Math. Soc. 124 (1966), 60-76. MR 0196556
Reference: [18] E. C. Tomastik: Principal quadratic functionals.Trans. Amer. Math. Soc. 218 (1976), 297-309. Zbl 0346.49013, MR 0405208
.

Files

Files Size Format View
ArchMath_025-1989-3_5.pdf 1.357Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo