Previous |  Up |  Next

Article

Title: On the existence of $\psi$-minimal viable solutions for a class of differential inclusions (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 27
Issue: 2
Year: 1991
Pages: 175-182
.
Category: math
.
MSC: 34A60
idZBL: Zbl 0759.34014
idMR: MR1189213
.
Date available: 2008-06-06T06:23:27Z
Last updated: 2012-05-09
Stable URL: http://hdl.handle.net/10338.dmlcz/107419
.
Reference: [1] J. P.Aubin: Slow and heavy viable trajectories of controlled problems. Smooth viability domain.In Multifunction and Integrals, ed. G. Salinetti, Lecture Notes in Math., vol. 1091, Springer, Berlin (1984), 105-116. MR 0785578
Reference: [2] J. P. Aubin A. Cellina: Differential Inclusions.Springer, Berlin (1984). MR 0755330
Reference: [3] J. P. Aubin I. Ekeland: Applied Analysis.Wiley, New York (1984). MR 0749753
Reference: [4] K. Deimling: Multivalued differential equations on closed sets.Diff. and Integral Equations 1 (1988), 23-30. Zbl 0715.34114, MR 0920486
Reference: [5] J. P. Delahaye J. Denel: The continuities of the point to set maps, definitions and equivalences.Math. Progr. Study 10 (1979), 8-12.
Reference: [6] M. Falcone P. Saint-Pierre: Slow and quasislow solutions of differential inclusions.Nonl. Anal. - T.M.A. 11 (1987), 367-377. MR 0881724
Reference: [7] C. Henry: Differential equations with discontinuous right hand side for planning procedures.J. Econ. Theory 4 (1972), 545-551. MR 0449534
Reference: [8] F. Hiai H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions.J. Mult. Anal. 7 (1977), 149-182. MR 0507504
Reference: [9] E. Klein A. Thompson: Theory of Correspondences.Wiley, New York (1984). MR 0752692
Reference: [10] K. Kuratowski: Topology I.Academic Press, New York (1966). MR 0217751
Reference: [11] U. Mosco: Convergence of convex sets and of solutions of variational inequalities.Adv. Math. 3 (1969), 510-585. Zbl 0192.49101, MR 0298508
Reference: [12] N. S. Papageorgiou: Convergence of Banach space valued integrable multifunction.Intern. J. Math and Math. Sci 10 (1987), 433-442. MR 0896595
Reference: [13] N. S. Papageorgiou: Viable and periodic solutions for differential inclusions in Banach spaces.Kobe J. Math. 5 (1988), 29-42. Zbl 0674.34014, MR 0988577
Reference: [14] T. Zolezzi: Well posedness and stability analysis in optimization.in the Proceedings of the "Fermat Days", ed. J.-B. Hiriat-Urruty, North Holland, New York (1986), 305-320. Zbl 0624.49011, MR 0874371
.

Files

Files Size Format View
ArchMath_027-1991-2_6.pdf 834.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo