Previous |  Up |  Next

Article

Title: On transformations of functional-differential equations (English)
Author: Čermák, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 29
Issue: 2
Year: 1993
Pages: 227-234
Summary lang: English
.
Category: math
.
Summary: The paper contains applications of Schrőder’s equation to differential equations with a deviating argument. There are derived conditions under which a considered equation with a deviating argument intersecting the identity $y=x$ can be transformed into an equation with a deviation of the form $\tau (x)=\lambda x$. Moreover, if the investigated equation is linear and homogeneous, we introduce a special form for such an equation. This special form may serve as a canonical form suitable for the investigation of oscillatory and asymptotic properties of the considered equation. (English)
Keyword: Functional-differential equation
Keyword: singular case
Keyword: transformation
Keyword: canonical form
MSC: 34K05
MSC: 34K99
idZBL: Zbl 0802.34079
idMR: MR1263124
.
Date available: 2008-06-06T21:25:04Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107485
.
Reference: [1] Eĺsgolc, L. E.: Vvedenije v teoriju differencialnych uravnenij s otklonjajuščimsa argumentom.Nauka, Moscow, 1964. (Russian) MR 0170049
Reference: [2] Heard, M. L.: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=ax(t)+bx(t^{\alpha }), \alpha >1$.J.Math.Anal.Appl. 44 (1973), 745–757. Zbl 0289.34115, MR 0333405
Reference: [3] Kato, T., McLeod, J. B.: The functional-differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$.Bull. Amer. Math. Soc. 77 (1971), 891–937. MR 0283338
Reference: [4] Kuczma, M.: Functional Equations in a Single Variable.Polish Scient.Publ., Warszawa, 1968. Zbl 0196.16403, MR 0228862
Reference: [5] Lade, G. S., Lakshmikantham, V., Zhang, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker, New York, 1983.
Reference: [6] Lim, E.-B.: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=Ax(\lambda t)+Bx(t), \lambda >0$.J.Math.Anal.Appl. 55 (1976), 794–806. Zbl 0336.34060, MR 0447749
Reference: [7] Neuman, F.: On transformations of differential equations and systems with deviating argument.Czechoslovak Math.J. 31(106) (1981), 87-90. Zbl 0463.34051, MR 0604115
Reference: [8] Neuman, F.: Transformation and canonical forms of functional-differential equation.Proc. Roy.Soc.Edinburgh 115A (1990), 349-357. MR 1069527
Reference: [9] Pandofi, L.: Some observations on the asymptotic behaviors of the solutions of the equation $x^{\prime }(t)=A(t)x(\lambda t)+B(t)x(t), \lambda >0$.J.Math.Anal.Appl. 67 (1979), 483–489. MR 0528702
Reference: [10] Szekeres, G.: Regular iteration of real and complex functions.Acta Math. 100 (1958), 203–258. Zbl 0145.07903, MR 0107016
Reference: [11] Tryhuk, V.: The most general transformation of homogeneous retarded linear differential equations of the $n$-th order.Math.Slovaka 33 (1983), 15–21. Zbl 0514.34058, MR 0689272
.

Files

Files Size Format View
ArchMathRetro_029-1993-2_12.pdf 246.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo