Previous |  Up |  Next

Article

Title: Einstein-like semi-symmetric spaces (English)
Author: Boeckx, E.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 29
Issue: 2
Year: 1993
Pages: 235-240
Summary lang: English
.
Category: math
.
Summary: One proves that semi-symmetric spaces with a Codazzi or Killing Ricci tensor are locally symmetric. Some applications of this result are given. (English)
Keyword: semi-symmetric spaces
Keyword: Killing and Codazzi Ricci tensor
Keyword: locally symmetric spaces
Keyword: spaces with volume-preserving geodesic symmetries
Keyword: C-spaces
Keyword: Osserman spaces
MSC: 53C25
MSC: 53C35
idZBL: Zbl 0807.53041
idMR: MR1263125
.
Date available: 2008-06-06T21:25:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107486
.
Reference: [BPV] Berndt, J., Prüfer, F., Vanhecke, L.: Symmetric-like Riemannian manifolds and geodesic symmetries.preprint. MR 1331561
Reference: [BV] Berndt, J., Vanhecke, L.: Two natural generalizations of locally symmetric spaces.Diff. Geom. Appl. 2 (1992), 57-80. MR 1244456
Reference: [B] Besse, A. L.: Einstein manifolds.Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. Zbl 1147.53001, MR 0867684
Reference: [Bo] Boeckx, E.: Asymptotically foliated semi-symmetric spaces.in preparation. Zbl 0846.53031
Reference: [BKV] Boeckx, E., Kowalski, O., Vanhecke, L.: Non-homogeneous relatives of symmetric spaces.Diff. Geom. Appl. (to appear).
Reference: [Ca] Cartan, E.: Leçons sur la géométrie des espaces de Riemann.2nd edition, Paris, 1946. Zbl 0060.38101, MR 0020842
Reference: [Ch] Cho, J. T.: Natural generalizations of locally symmetric spaces.Indian J. Pure Appl. Math. (to appear). Zbl 0772.53029, MR 1218533
Reference: [D’AN] D’Atri, J. E., Nickerson, H. K.: Divergence-preserving geodesic symmetries.J. Diff. Geom. 3 (1969), 467-476. MR 0262969
Reference: [GSV] Gilkey, P., Swann, A., Vanhecke, L.: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator.preprint. MR 1348819
Reference: [G] Gray, A.: Einstein-like manifolds which are not Einstein.Geom. Dedicata 7 (1978), 259-280. Zbl 0378.53018, MR 0505561
Reference: [KN] Kobayashi, S., Nomizu, K.: Foundations of differential geometry I, II.Interscience Publishers, New York, 1963, 1969. MR 0152974
Reference: [K1] Kowalski, O.: Spaces with volume-preserving geodesic symmetries and related classes of Riemannian manifolds.Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale Settembre (1983), 131–158. MR 0829002
Reference: [K2] Kowalski, O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $\scriptstyle R(X,Y)\cdot R=0$.preprint. MR 1408298
Reference: [O] R. Osserman: Curvature in the eighties.Amer. Math. Monthly 97 (1990), 731-756. Zbl 0722.53001, MR 1072814
Reference: [S] Sinjukov, N. S.: Geodesic maps on Riemannian spaces.(Russian), Publishing House “Nauka" Moscow, 1979. MR 0552022
Reference: [Sz1] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, I,Local version.J. Diff. Geom. 17 (1982), 531-582. MR 0683165
Reference: [Sz2] Szabó, Z. I.: Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, II, Global versions.Geom. Dedicata 19 (1985), 65-108. MR 0797152
Reference: [V1] Vanhecke, L.: Some solved and unsolved problems about harmonic and commutative spaces.Bull. Soc. Math. Belg., Sér. B 34 (1982), 1-24. Zbl 0518.53042, MR 0683378
Reference: [V2] Vanhecke, L.: Geometry in normal and tubular neighborhoods.Lecture Notes, Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia), Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176. MR 1122858
.

Files

Files Size Format View
ArchMathRetro_029-1993-2_13.pdf 228.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo