[BPV] Berndt, J., Prüfer, F., Vanhecke, L.: 
Symmetric-like Riemannian manifolds and geodesic symmetries. preprint. 
MR 1331561[BV] Berndt, J., Vanhecke, L.: 
Two natural generalizations of locally symmetric spaces. Diff. Geom. Appl. 2 (1992), 57-80. 
MR 1244456[B] Besse, A. L.: 
Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. 
MR 0867684 | 
Zbl 1147.53001[Bo] Boeckx, E.: 
Asymptotically foliated semi-symmetric spaces. in preparation. 
Zbl 0846.53031[BKV] Boeckx, E., Kowalski, O., Vanhecke, L.: Non-homogeneous relatives of symmetric spaces. Diff. Geom. Appl. (to appear).
[Ch] Cho, J. T.: 
Natural generalizations of locally symmetric spaces. Indian J. Pure Appl. Math. (to appear). 
MR 1218533 | 
Zbl 0772.53029[D’AN] D’Atri, J. E., Nickerson, H. K.: 
Divergence-preserving geodesic symmetries. J. Diff. Geom. 3 (1969), 467-476. 
MR 0262969[GSV] Gilkey, P., Swann, A., Vanhecke, L.: 
Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. preprint. 
MR 1348819[G] Gray, A.: 
Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259-280. 
MR 0505561 | 
Zbl 0378.53018[KN] Kobayashi, S., Nomizu, K.: 
Foundations of differential geometry I, II. Interscience Publishers, New York, 1963, 1969. 
MR 0152974[K1] Kowalski, O.: 
Spaces with volume-preserving geodesic symmetries and related classes of Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo Speciale Settembre (1983), 131–158. 
MR 0829002[K2] Kowalski, O.: 
An explicit classification of 3-dimensional Riemannian spaces satisfying $\scriptstyle R(X,Y)\cdot R=0$. preprint. 
MR 1408298[S] Sinjukov, N. S.: 
Geodesic maps on Riemannian spaces. (Russian), Publishing House “Nauka" Moscow, 1979. 
MR 0552022[Sz1] Szabó, Z. I.: 
Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, I,Local version. J. Diff. Geom. 17 (1982), 531-582. 
MR 0683165[Sz2] Szabó, Z. I.: 
Structure theorems on Riemannian manifolds satisfying $\scriptstyle R(X,Y)\cdot R=0$, II, Global versions. Geom. Dedicata 19 (1985), 65-108. 
MR 0797152[V1] Vanhecke, L.: 
Some solved and unsolved problems about harmonic and commutative spaces. Bull. Soc. Math. Belg., Sér. B 34 (1982), 1-24. 
MR 0683378 | 
Zbl 0518.53042[V2] Vanhecke, L.: 
Geometry in normal and tubular neighborhoods. Lecture Notes, Proc. Workshop on Differential Geometry and Topology, Cala Gonone (Sardinia), Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73-176. 
MR 1122858