Title:
|
Curvature tensors in dimension four which do not belong to any curvature homogeneous space (English) |
Author:
|
Kowalski, Oldřich |
Author:
|
Prüfer, Friedbert |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
30 |
Issue:
|
1 |
Year:
|
1994 |
Pages:
|
45-57 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A six-parameter family is constructed of (algebraic) Riemannian curvature tensors in dimension four which do not belong to any curvature homogeneous space. Also a general method is given for a possible extension of this result. (English) |
Keyword:
|
Riemannian manifolds |
Keyword:
|
curvature tensor |
Keyword:
|
curvature homogeneous spaces |
MSC:
|
53C20 |
MSC:
|
53C21 |
MSC:
|
53C30 |
idZBL:
|
Zbl 0813.53027 |
idMR:
|
MR1282112 |
. |
Date available:
|
2008-06-06T21:25:36Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107494 |
. |
Reference:
|
[CH] Chern S.S.: On the Curvature and Characteristic Classes of a Riemannian manifold.Abh. Math. Sem. Univ. Hamburg 20 (1955), 117-126. MR 0075647 |
Reference:
|
[K1] Kowalski O.: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R = 0$.Preprint, 1991. MR 1408298 |
Reference:
|
[K2] Kowalski O.: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1 = \rho _2 \ne \rho _3$.To appear in Nagoya Math. J. 132 (1993). MR 1253692 |
Reference:
|
[K3] Kowalski O.: Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Comment. Math. Univ. Carolinae, 34, 3 (1993), 451-457. Zbl 0789.53024, MR 1243077 |
Reference:
|
[KL] Klinger R.: A Basis that Reduces to Zero as many Curvature Components as Possible.Abh. Math. Sem. Univ. Hamburg 61 (1991), 243-248. Zbl 0753.53012, MR 1138290 |
Reference:
|
[K-N] Kobayashi S., Nomizu K.: Foundations of Differential geometry I.Interscience Publishers, New York 1963. Zbl 0119.37502, MR 0152974 |
Reference:
|
[K-P] Kowalski O., Prüfer F.: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Preprint, 1993. MR 1289828 |
Reference:
|
[K-T-V1] Kowalski O., Tricerri F., Vanhecke L.: New examples of non-homogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space.C. R. Acad. Sci. Paris, Sér. I, 311 (1990), 355-360 Zbl 0713.53028, MR 1071643 |
Reference:
|
[K-T-V2] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous Riemannian manifolds.J. Math. Pures Appl. 71 (1992), 471 - 501. Zbl 0836.53029, MR 1193605 |
Reference:
|
[K-T-V3] Kowalski O., Tricerri F., Vanhecke L.: Curvature homogeneous spaces with a solvable Lie group as a homogeneous model.J. Math. Soc. Japan, 44 (1992), 461-484. MR 1167378 |
Reference:
|
[K-V] Kowalski O., Vanhecke L.: Ball-Homogeneous and Disk-Homogeneous Riemannian manifolds.Math. Z. 180 (1982), 429-444. Zbl 0476.53023, MR 0666999 |
Reference:
|
[N-T] Nicolodi L., Tricerri F.: On two Theorems of I.M. Singer about Homogeneous Spaces.Ann. Global Anal. Geom. 8 (1990), 193-209. Zbl 0676.53058, MR 1088511 |
Reference:
|
[M] Milnor J.: Curvatures of left invariant metrics on Lie groups.Adv. in Math. 21 (1976), 293-329. Zbl 0341.53030, MR 0425012 |
Reference:
|
[SE] Sekigawa K.: On some 3-dimensional Riemannian manifolds.Hokkaido Math. J. 2 (1973), 259-270. Zbl 0266.53034, MR 0353204 |
Reference:
|
[SI] Singer I.M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685-697. Zbl 0171.42503, MR 0131248 |
Reference:
|
[SI-TH] Singer I.M., Thorpe J.A.: The curvature of 4-dimensional Einstein spaces.In: Global Analysis (Papers in honor of K. Kodaira, pp. 355-366) Princeton, New Jersey, Princeton University Press 1969. Zbl 0199.25401, MR 0256303 |
Reference:
|
[S-T] Spiro A., Tricerri F.: 3-dimensional Riemannian metrics with prescribed Ricci principal curvatures.Preprint, 1993. MR 1327884 |
Reference:
|
[T] Tsukada T.: Curvature homogeneous hypersurfaces immersed in a real space form.Tôhoku Math. J. 40 (1988), 221-244. Zbl 0651.53037, MR 0943821 |
Reference:
|
[T-V] Tricerri F., Vanhecke L.: Curvature tensors on almost Hermitian manifolds.Trans. Amer. Math. Soc. 267 (1981), 365-398. Zbl 0484.53014, MR 0626479 |
Reference:
|
[YA] Yamato K.: A characterization of locally homogeneous Riemannian manifolds of dimension three.Nagoya Math. J. 123 (1991), 77-90. MR 1126183 |
. |